Functional optimization of fluidic devices with differentiable stokes flow

We present a method for performance-driven optimization of fluidic devices. In our approach, engineers provide a high-level specification of a device using parametric surfaces for the fluid-solid boundaries. They also specify desired flow properties for inlets and outlets of the device. Our computational approach optimizes the boundary of the fluidic device such that its steady-state flow matches desired flow at outlets. In order to deal with computational challenges of this task, we propose an efficient, differentiable Stokes flow solver. Our solver provides explicit access to gradients of performance metrics with respect to the parametric boundary representation. This key feature allows us to couple the solver with efficient gradient-based optimization methods. We demonstrate the efficacy of this approach on designs of five complex 3D fluidic systems. Our approach makes an important step towards practical computational design tools for high-performance fluidic devices.

[1]  Takeo Igarashi,et al.  Simulating Liquids on Dynamically Warping Grids , 2020, IEEE Transactions on Visualization and Computer Graphics.

[2]  Joe Alexandersen,et al.  A Review of Topology Optimisation for Fluid-Based Problems , 2020, Fluids.

[3]  V. Koltun,et al.  Learning to Control PDEs with Differentiable Physics , 2020, ICLR.

[4]  Nils Thuerey,et al.  ScalarFlow , 2019, ACM Trans. Graph..

[5]  James K. Guest,et al.  Adaptive topology optimization for incompressible laminar flow problems with mass flow constraints , 2019, Computer Methods in Applied Mechanics and Engineering.

[6]  Eftychios Sifakis,et al.  Narrow-band topology optimization on a sparsely populated grid , 2018, ACM Trans. Graph..

[7]  Jiancheng Liu,et al.  ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[8]  Jiajun Wu,et al.  Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids , 2018, ICLR.

[9]  Ole Sigmund,et al.  Shape morphing and topology optimization of fluid channels by explicit boundary tracking , 2018, International Journal for Numerical Methods in Fluids.

[10]  Nobuyuki Umetani,et al.  Learning three-dimensional flow for interactive aerodynamic design , 2018, ACM Trans. Graph..

[11]  Connor Schenck,et al.  SPNets: Differentiable Fluid Dynamics for Deep Neural Networks , 2018, CoRL.

[12]  Markus H. Gross,et al.  Deep Fluids: A Generative Network for Parameterized Fluid Simulations , 2018, Comput. Graph. Forum.

[13]  O. Sigmund,et al.  Topology Optimization of Turbulent Flows , 2018 .

[14]  Cetin Batur Dilgen,et al.  Density based topology optimization of turbulent flow heat transfer systems , 2018 .

[15]  O. Sigmund,et al.  Density based topology optimization of turbulent flow heat transfer systems , 2018, Structural and Multidisciplinary Optimization.

[16]  Ole Sigmund,et al.  Giga-voxel computational morphogenesis for structural design , 2017, Nature.

[17]  Jie Li,et al.  ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints , 2017, IEEE Trans. Vis. Comput. Graph..

[18]  N. Thürey,et al.  Data-driven synthesis of smoke flows with CNN-based feature descriptors , 2017, ACM Trans. Graph..

[19]  Kurt Maute,et al.  CutFEM topology optimization of 3D laminar incompressible flow problems , 2017, ArXiv.

[20]  Renato Pavanello,et al.  Optimization of fluid-structure systems by eigenvalues gap separation with sensitivity analysis , 2017 .

[21]  Manuel Menezes de Oliveira Neto,et al.  Preserving geometry and topology for fluid flows with thin obstacles and narrow gaps , 2016, ACM Trans. Graph..

[22]  K. Giannakoglou,et al.  Continuous Adjoint Methods for Turbulent Flows, Applied to Shape and Topology Optimization: Industrial Applications , 2016 .

[23]  James K. Guest,et al.  Topology Optimization of Fixed-Geometry Fluid Diodes , 2015 .

[24]  Rüdiger Westermann,et al.  Large-Scale Liquid Simulation on Adaptive Hexahedral Grids , 2014, IEEE Transactions on Visualization and Computer Graphics.

[25]  Hujun Bao,et al.  Interactive localized liquid motion editing , 2013, ACM Trans. Graph..

[26]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[27]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[28]  Joshua D. Deaton,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2013, Structural and Multidisciplinary Optimization.

[29]  Ole Sigmund,et al.  Topology Optimization of Fluid-Structure-Interaction Problems in Poroelasticity , 2013 .

[30]  Eftychios Sifakis,et al.  Simulation of complex nonlinear elastic bodies using lattice deformers , 2012, ACM Trans. Graph..

[31]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[32]  Eftychios Sifakis,et al.  A second-order virtual node algorithm for nearly incompressible linear elasticity in irregular domains , 2012, J. Comput. Phys..

[33]  Greg Turk,et al.  Controlling liquids using meshes , 2012, SCA '12.

[34]  Ronald Fedkiw,et al.  Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid , 2012, J. Comput. Phys..

[35]  Eftychios Sifakis,et al.  A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions , 2012, J. Comput. Phys..

[36]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[37]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[38]  G. Yoon Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation , 2010 .

[39]  Eftychios Sifakis,et al.  An efficient multigrid method for the simulation of high-resolution elastic solids , 2010, TOGS.

[40]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[41]  James K. Guest,et al.  Level set topology optimization of fluids in Stokes flow , 2009 .

[42]  Eftychios Sifakis,et al.  Comprehensive biomechanical modeling and simulation of the upper body , 2009, TOGS.

[43]  Ronald Fedkiw,et al.  A method for avoiding the acoustic time step restriction in compressible flow , 2009, J. Comput. Phys..

[44]  Qing Li,et al.  A variational level set method for the topology optimization of steady-state Navier-Stokes flow , 2008, J. Comput. Phys..

[45]  Jose L. Gracia,et al.  Distributive smoothers in multigrid for problems with dominating grad–div operators , 2008, Numer. Linear Algebra Appl..

[46]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[47]  Ole Sigmund,et al.  Topology optimization of large scale stokes flow problems , 2008 .

[48]  R. Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[49]  James K. Guest,et al.  Topology optimization of creeping fluid flows using a Darcy–Stokes finite element , 2006 .

[50]  A. Evgrafov Topology optimization of slightly compressible fluids , 2006 .

[51]  James F. O'Brien,et al.  Fluids in deforming meshes , 2005, SCA '05.

[52]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[53]  B. Lautrup Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World , 2004 .

[54]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[55]  William V. Baxter,et al.  A viscous paint model for interactive applications , 2004, SIGGRAPH '04.

[56]  K. Maute,et al.  Conceptual design of aeroelastic structures by topology optimization , 2004 .

[57]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[58]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[59]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[60]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[61]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[62]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[63]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[64]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[65]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[66]  E. Ramm,et al.  Adaptive topology optimization , 1995 .

[67]  Ming C. Lin,et al.  Differentiable Cloth Simulation for Inverse Problems , 2019, NeurIPS.

[68]  R. Bridson,et al.  Supplemental to : “ Variational Stokes : A Unified Pressure-Viscosity Solver for Accurate Viscous Liquids " , 2017 .

[69]  Erik Kaestner,et al.  Finite Element Method Linear Static And Dynamic Finite Element Analysis , 2016 .

[70]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[71]  Long Chen FINITE ELEMENT METHOD , 2013 .

[72]  Robert Bridson,et al.  Steady State Stokes Flow Interpolation for Fluid Control , 2012, Eurographics.

[73]  Eftychios Sifakis,et al.  ' s personal copy A second order virtual node method for elliptic problems with interfaces and irregular domains , 2010 .

[74]  George I. N. Rozvany,et al.  A critical review of established methods of structural topology optimization , 2009 .

[75]  Philip W. Smith,et al.  Spline Notation Applied to a Volume Problem , 1979 .

[76]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .

[77]  Simulation Complex , 2022 .