Introduction to Membrane Science and Technology

Preface Symbols INTRODUCTION Overview of Membrane Science and Technology History of Membranes Science and Technology Advantages and Limitations of Membrane Processes The Membrane-Based Industry: Its Structures and Markets Future Developments in Membrane Science and Technology Summary FUNDAMENTALS Introduction Definition of Terms Fundamentals of Mass Transport in Membranes and Membrane Processes Mathematical Description of Mass Transport in Membranes MEMBRANE PREPARATION AND CHARACTERIZATION Introduction Membrane Materials Preparation of Membranes Membrane Characterization PRINCIPLES OF MEMBRANE SEPARATION PROCESSSES Introduction The Principle of Membrane Filtration Processes The Principle of Gas and Vapor Separation The Principle of Dialysis The Principle of Electromembrane Processes The Principle of Membrane Contactors Membrane Reactors Membrane-Based Controlled Release of Active Agents MEMBRANE MODULES AND CONCENTRATION POLARIZATION Introduction Membrane Modules Concentration Polarization and Membrane Fouling MEMBRANE PROCESS DESIGN AND OPERATION Introduction Membrane Filtration Processes Gas Separation Pervaporation Dialysis Electrodialysis and Related Processes APPENDIX A APPENDIX B

[1]  James E. Flinn,et al.  Membrane Science and Technology , 1970, Springer US.

[2]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[3]  T. Uragami,et al.  Permeation and separation under high temperature and high pressure for ethanol/water vapors through cross-linked quaternized chitosan composite membranes , 2002 .

[4]  R. L. Riley,et al.  Preparation of ultrathin reverse osmosis membranes and the attainment of theoretical salt rejection , 1967 .

[5]  Kang-Jen Liu,et al.  Use of bipolar membranes for generation of acid and base — an engineering and economic analysis , 1977 .

[6]  G. Bennett New Insights into Membrane Science and Technology: Polymeric and Biofunctional Membranes , 2004 .

[7]  René Bloch,et al.  Hydrometallurgical Separations by Solvent Membranes , 1970 .

[8]  W. Bachmann,et al.  Über neue Filter , 1918 .

[9]  T. Uragami,et al.  Permeation and separation characteristics of alcohol–water mixtures through poly(dimethyl siloxane) membrane by pervaporation and evapomeation , 1992 .

[10]  J. E. Cadotte,et al.  Thin-Film Composite Reverse-Osmosis Membranes: Origin, Development, and Recent Advances , 1981 .

[11]  W. Osterhout How Do Electrolytes Enter the Cell? , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[12]  William E. Katz,et al.  The electrodialysis reversal (EDR) process , 1979 .

[13]  T. Uragami Concentration of Bio-Ethanol through Cellulose Ester Membranes during Temperature-Difference Controlled Evapomeation , 2011 .

[14]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005, Nature.

[15]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[16]  W J Kolff,et al.  The Artificial Kidney: a dialyser with a great area , 2009 .

[17]  Andrew L. Zydney,et al.  Microfiltration and Ultrafiltration: Principles and Applications , 1996 .

[18]  Peter Eriksson,et al.  Nanofiltration extends the range of membrane filtration , 1988 .

[19]  T. Uragami Polymer Membranes for Separation of Organic Liquid Mixtures , 2006 .

[20]  A. J. Staverman Non-equilibrium thermodynamics of membrane processes , 1952 .

[21]  Charles E. Reid,et al.  Water and ion flow across cellulosic membranes , 1959 .

[22]  P. A. Kober,et al.  PERVAPORATION, PERSTILLATION AND PERCRYSTALLIZATION.1 , 1917 .

[23]  K. S. Spiegler,et al.  Transport processes in ionic membranes , 1958 .

[24]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[25]  K. Sollner,et al.  CARRIER MECHANISMS IN THE MOVEMENT OF IONS ACROSS POROUS AND LIQUID ION EXCHANGER MEMBRANES , 1966, Annals of the New York Academy of Sciences.

[26]  J. Mcbain,et al.  Ultrafiltration as a Test for Colloidal Constituents in Aqueous and Non-aqueous Systems , 1930 .

[27]  Robert J. Lee,et al.  Separation of Liquid Mixtures by Permeation , 1961 .

[28]  A. Katchalsky,et al.  A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability , 1961, The Journal of general physiology.

[29]  F. Erbe Die Bestimmung der Porenverteilung nach ihrer Größe in Filtern und Ultrafiltern , 1933 .

[30]  H. K. Lonsdale,et al.  Synthetic membranes : science, engineering, and applications , 1986 .

[31]  K. Maier,et al.  Über die Bildungsweise Teildurchlässiger Membranen , 1960 .

[32]  Richard M. Crooks,et al.  Single Carbon Nanotube Membranes: A Well-Defined Model for Studying Mass Transport through Nanoporous Materials , 2000 .

[33]  Thomas Graham,et al.  XVIII. On the absorption and dialytic separation of gases by colloid septa , 1866, Philosophical Transactions of the Royal Society of London.

[34]  H. Bechhold Durchlässigkeit von Ultrafiltern , 1908 .

[35]  Jay Myls Stuart Henis,et al.  A Novel Approach to Gas Separations Using Composite Hollow Fiber Membranes , 1980 .

[36]  M. Planck,et al.  Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .

[37]  Enrico Drioli,et al.  Progress and New Perspectives on Integrated Membrane Operations for Sustainable Industrial Growth , 2001 .

[38]  T. Uragami Structural Design of Polymer Membranes for Concentration of Bio-ethanol , 2008 .

[39]  T. Matsuura,et al.  Synthetic Polymeric Membranes , 2009 .

[40]  R. Baker,et al.  Pervaporation for wastewater treatment , 1997 .

[41]  Thomas Graham,et al.  VI. On the absorption and dialytic separation of gases by colloid septa , 1867, Proceedings of the Royal Society of London.

[42]  William J. Conlon,et al.  Membrane Softening: A Treatment Process Comes of Age , 1989 .

[43]  Richard W. Baker,et al.  The formation mechanism of asymmetric membranes , 1975 .

[44]  T. Uragami,et al.  Studies on syntheses and permeabilities of special polymer membranes, 69. Comparison of permeation and separation characteristics for aqueous alcoholic solutions by pervaporation and new evapomeation methods through chitosan membranes , 1988 .

[45]  J. Jagur-grodzinski,et al.  The Mechanism of a Selective Permeation of Ions through “Solvent Polymeric Membranes” , 1973 .

[46]  W. J. Elford The Principles of Ultrafiltration as Applied in Biological Studies , 1933 .

[47]  J. H. van't Hoff,et al.  Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen , 1887 .

[48]  H. K. Lonsdale,et al.  The growth of membrane technology , 1982 .

[49]  T. Uragami,et al.  Concentration of aqueous alcoholic solutions through a modified silicone rubber membrane by pervaporation and evapomeation , 1991 .

[50]  O. Kedem,et al.  Ion Specific Polymer Membrane , 1963, Nature.

[51]  L. Kahlenberg On the Nature of the Process of Osmosis and Osmotic Pressure with Observations Concerning Dialysis , 1904 .

[52]  W. J. Elford,et al.  A new series of graded collodion membranes suitable for general bacteriological use, especially in filterable virus studies , 1931 .

[53]  E. Fontananova,et al.  Catalytic Membranes and Membrane Reactors , 2010 .

[54]  H. Bechhold Kolloidstudien mit der Filtrationsmethode , 1907 .

[55]  Walter Juda,et al.  COHERENT ION-EXCHANGE GELS AND MEMBRANES , 1950 .

[56]  T. Uragami,et al.  Concentration of aqueous dimethyl sulfoxide solutions through a chitosan membrane by permeation with a temperature difference , 1992 .

[57]  David S. Sholl,et al.  Making High-Flux Membranes with Carbon Nanotubes , 2006, Science.