Experimental and theoretical investigations of steady and transient states in systems of ion exchange bipolar membranes

Abstract The electrochemical characteristics of one commercial bipolar ion exchange membrane and of two home-made bipolar membranes are investigated over a range of current densities up to 2 kA m−2. Studies are performed using galvano-potentiometry (i/V) and impedance spectrometry methods. The temperature dependence of i/V curves enables the determination of the activation energies related to the overall electrochemical process of H+ and OH− production by water dissociation at the membrane junction. The physical analysis of the experimental data is made on the basis of a neutral layer model for the membrane junction. The theoretical treatment leads first to establish a thermodynamic framework insuring the validity of the criteria used in the interpretation of the results in terms of the model. Application of current electrochemical kinetic concepts at steady state involves the idea that, in the presence of an efficient catalyst, a quasi-reversible state of the water dissociation reaction may be achieved at the junction. A theoretical approach is developed for treating the data obtained with transient measurements in absence of co-ion transport. This study reveals the intrinsic roles played in the overall process of respectively: (a) the H+ and OH− ion transport; (b) the electrical double layers at the membrane junction boundaries; and (c) the chemical mechanism of water dissociation.

[1]  R. Simons,et al.  Preparation of a high performance bipolar membrane , 1993 .

[2]  K. Traoré,et al.  Transfer coefficients in electrochemical kinetics , 1971 .

[3]  H. Strathmann,et al.  Theoretical and practical aspects of preparing bipolar membranes , 1993 .

[4]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[5]  H. Hurwitz,et al.  Ion-pairing in strong electric fields , 1968 .

[6]  J. Smith,et al.  The low frequency conductance of bipolar membranes demonstrates the presence of a depletion layer , 1998 .

[7]  H. Coster,et al.  A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of "punch-through". , 1965, Biophysical journal.

[8]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[9]  R. Simons,et al.  Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes , 1984 .

[10]  Salvador Mafé,et al.  AC impedance spectra of bipolar membranes: an experimental study , 1998 .

[11]  J. Manzanares,et al.  How does a transition zone affect the electric field enhanced water dissociation in bipolar membranes , 1994 .

[12]  José A. Manzanares,et al.  Effects of temperature and ion transport on water splitting in bipolar membranes , 1992 .

[13]  Salvador Mafé,et al.  Ion selectivity and water dissociation in polymer bipolar membranes studied by membrane potential and current–voltage measurements , 2000 .

[14]  H. Reiss,et al.  Ion transport and water dissociation in bipolar ion exchange membranes , 1983 .

[15]  J. Badiali,et al.  On a new theoretical approach to electrified interfaces , 1996 .

[16]  Akihiko Tanioka,et al.  Effect of polymer materials on membrane potential, rectification and water splitting in bipolar membranes , 1996 .

[17]  R. Simons,et al.  A mechanism for water flow in bipolar membranes , 1993 .

[18]  R. Simons,et al.  A novel method for preparing bipolar membranes , 1986 .

[19]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[20]  H. Strathmann,et al.  Limiting current density and water dissociation in bipolar membranes , 1997 .

[21]  G. Khanarian,et al.  Water dissociation in bipolar membranes: Experiments and theory , 1978, The Journal of Membrane Biology.

[22]  R. Simons,et al.  Strong electric field effects on proton transfer between membrane-bound amines and water , 1979, Nature.

[23]  Salvador Mafé,et al.  Electric field enhanced water dissociation at the bipolar membrane junction from ac impedance spectra measurements , 1998 .

[24]  C. Dellago,et al.  Autoionization in Liquid Water , 2001, Science.

[25]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .

[26]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[27]  N. Gnusin,et al.  The current-voltage characteristic of the transition region in MB-1 bipolar membranes , 1985 .

[28]  F. De Körösy,et al.  Bipolar Membranes Made of a Single Polyolephine Sheet , 1971 .

[29]  R. Brdička,et al.  Rate of recombination of ions derived from polarographic limiting currents due to the reduction of acids , 1947 .

[30]  A. Mauro,et al.  Space Charge Regions in Fixed Charge Membranes and the Associated Property of Capacitance. , 1962, Biophysical journal.

[31]  H. Strathmann,et al.  Process economics of the electrodialytic water dissociation for the production of acid and base , 2000 .

[32]  P. Ramirez,et al.  Electrochemical characterization of polymer ion-exchange bipolar membranes , 1997 .

[33]  H. Hurwitz,et al.  Proprietes d'equilibre des systemes polarises. Cas de la partie diffuse de la double couche electrochimique , 1964 .

[34]  L. Onsager Deviations from Ohm's Law in Weak Electrolytes , 1934 .

[35]  H. Ohshima,et al.  Donnan potential and surface potential of a charged membrane. , 1985, Biophysical journal.

[36]  T. V. D. Boomgaard,et al.  Current-voltage curve of a bipolar membrane at high current density , 1996 .

[37]  Salvador Mafé,et al.  A SIMPLE MODEL FOR AC IMPEDANCE SPECTRA IN BIPOLAR MEMBRANES , 1996 .

[38]  H. Hurwitz,et al.  Investigation of electrical properties of bipolar membranes at steady state and with transient methods , 2001 .

[39]  H. Gerischer Wechselstrompolarisation von Elektroden mit einem potentialbestimmenden Schritt beim Gleichgewichtspotential I. , 1951 .

[40]  V. I. Zabolotskii,et al.  Investigation of the catalytic activity of secondary and tertiary amino groups in the dissociation of water on a bipolar mb-2 membrane , 1986 .

[41]  H. Hurwitz,et al.  Comportement des membranes bipolaires sous l'effet de mesures électrochimiques à l'état stationnaire et dans des conditions transitoires , 2001 .

[42]  R. Simons,et al.  Water splitting in ion exchange membranes , 1985 .

[43]  Salvador Mafé,et al.  Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane , 1998 .

[44]  J. Manzanares,et al.  Modeling of forward and reverse bias conditions in bipolar membranes , 1993 .

[45]  B. Kunst,et al.  Rectifying mechanism of “pressed sandwich” type membrane junctions , 1967 .