HP-INTERPOLATION OF NON-SMOOTH FUNCTIONS
暂无分享,去创建一个
[1] Christine Bernardi,et al. Indicateurs d’erreur en $h-N$ version des éléments spectraux , 1996 .
[2] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[3] I. Babuska,et al. Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .
[4] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[5] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[6] Faker Ben Belgacem. Polynomial extensions of compatible polynomial traces in three dimensions , 1994 .
[7] Ivo Babuska,et al. Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions , 2000, Numerische Mathematik.
[8] I. Babuska,et al. The finite element method and its reliability , 2001 .
[9] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[10] G. Pólya,et al. Inequalities (Cambridge Mathematical Library) , 1934 .
[11] Jens Markus Melenk,et al. Approximation of Integral Operators by Variable-Order Interpolation , 2005, Numerische Mathematik.
[12] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[13] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[14] Vivette Girault,et al. Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..
[15] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[16] Dietrich Braess,et al. Approximation on Simplices with Respect to Weighted Sobolev Norms , 2000 .
[17] Emilio Gagliardo,et al. Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili , 1957 .
[18] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..
[19] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[20] Rafael Muñoz-Sola,et al. Polynomial Liftings on a Tetrahedron and Applications to the h - p Version of the Finite Element Method in Three Dimensions , 1997 .
[21] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[22] Christine Bernardi,et al. An error indicator for mortar element solutions to the Stokes problem , 2001 .
[23] Mark Ainsworth,et al. The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs , 1999, Numerische Mathematik.
[24] Ivo Babuška,et al. The optimal convergence rate of the p-version of the finite element method , 1987 .
[25] Ivo Babuska,et al. Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part I: Approximability of Functions in the Weighted Besov Spaces , 2001, SIAM J. Numer. Anal..
[26] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[27] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[28] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[29] V. Girault,et al. A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .
[30] J. L. Lions,et al. Théorèmes de Trace et d'Interpolation (IV) , 1963 .