HP-INTERPOLATION OF NON-SMOOTH FUNCTIONS

The quasi-interpolation operators of Clément and Scott-Zhang type are generalized to the hp-context. New polynomial lifting and inverse estimates are presented as well.

[1]  Christine Bernardi,et al.  Indicateurs d’erreur en $h-N$ version des éléments spectraux , 1996 .

[2]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[3]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[4]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[5]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[6]  Faker Ben Belgacem Polynomial extensions of compatible polynomial traces in three dimensions , 1994 .

[7]  Ivo Babuska,et al.  Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions , 2000, Numerische Mathematik.

[8]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[9]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[10]  G. Pólya,et al.  Inequalities (Cambridge Mathematical Library) , 1934 .

[11]  Jens Markus Melenk,et al.  Approximation of Integral Operators by Variable-Order Interpolation , 2005, Numerische Mathematik.

[12]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[13]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[14]  Vivette Girault,et al.  Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..

[15]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[16]  Dietrich Braess,et al.  Approximation on Simplices with Respect to Weighted Sobolev Norms , 2000 .

[17]  Emilio Gagliardo,et al.  Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili , 1957 .

[18]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[19]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[20]  Rafael Muñoz-Sola,et al.  Polynomial Liftings on a Tetrahedron and Applications to the h - p Version of the Finite Element Method in Three Dimensions , 1997 .

[21]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[22]  Christine Bernardi,et al.  An error indicator for mortar element solutions to the Stokes problem , 2001 .

[23]  Mark Ainsworth,et al.  The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs , 1999, Numerische Mathematik.

[24]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[25]  Ivo Babuska,et al.  Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part I: Approximability of Functions in the Weighted Besov Spaces , 2001, SIAM J. Numer. Anal..

[26]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[27]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[28]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[29]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[30]  J. L. Lions,et al.  Théorèmes de Trace et d'Interpolation (IV) , 1963 .