Cross-correlating Planck tSZ with RCSLenS weak lensing: implications for cosmology and AGN feedback
暂无分享,去创建一个
L. Miller | C. Heymans | G. Hinshaw | L. Waerbeke | H. Hildebrandt | T. Erben | M. Viola | I. McCarthy | J. Harnois-D'eraps | Yin-Zhe Ma | A. Choi | A. Hojjati | H. Tanimura | T. Troster
[1] T. Kitching,et al. RCSLenS: The Red Cluster Sequence Lensing Survey , 2016, 1603.07722.
[2] T. Kitching,et al. CFHTLenS and RCSLenS Cross-Correlation with Planck Lensing Detected in Fourier and Configuration Space , 2016, 1603.07723.
[3] A. Heavens,et al. Parameter inference with estimated covariance matrices , 2015, 1511.05969.
[4] C. B. D'Andrea,et al. Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.
[5] R. B. Barreiro,et al. Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.
[6] B. Garilli,et al. The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field , 2015, 1502.02867.
[7] J. Melin,et al. Testing Sunyaev-Zel'dovich measurements of the hot gas content of dark matter haloes using synthetic skies , 2015, 1501.05666.
[8] C. Heymans,et al. Baryons, neutrinos, feedback and weak gravitational lensing , 2014, 1407.4301.
[9] G. Hinshaw,et al. Probing the diffuse baryon distribution with the lensing-tSZ cross-correlation , 2014, 1404.4808.
[10] G. Hinshaw,et al. Dissecting the thermal Sunyaev-Zeldovich-gravitational lensing cross-correlation with hydrodynamical simulations , 2014, 1412.6051.
[11] N. Battaglia,et al. DECONSTRUCTING THERMAL SUNYAEV–ZEL’DOVICH—GRAVITATIONAL LENSING CROSS-CORRELATIONS: IMPLICATIONS FOR THE INTRACLUSTER MEDIUM , 2014, 1412.5593.
[12] L. Waerbeke,et al. Weak lensing corrections to tSZ-lensing cross correlation , 2014, 1408.6284.
[13] J. Schaye,et al. Towards a realistic population of simulated galaxy groups and clusters , 2013, 1312.5462.
[14] J. Schaye,et al. The thermal Sunyaev–Zel'dovich effect power spectrum in light of Planck , 2013, 1312.5341.
[15] David N. Spergel,et al. Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data , 2013, 1312.4525.
[16] G. Hinshaw,et al. Detection of warm and diffuse baryons in large scale structure from the cross-correlation of gravitational lensing and the thermal Sunyaev-Zeldovich effect , 2013, 1310.5721.
[17] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[18] H. Hoekstra,et al. CFHTLenS: mapping the large-scale structure with gravitational lensing , 2013, 1303.1806.
[19] H. Hoekstra,et al. Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.
[20] Edwin A. Valentijn,et al. The Kilo-Degree Survey , 2012, Experimental Astronomy.
[21] Craig Loomis,et al. Hyper Suprime-Cam , 2012, Other Conferences.
[22] L. Miller,et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.
[23] G. W. Pratt,et al. Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.
[24] J. R. Bond,et al. ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM , 2011, 1109.3711.
[25] H. Hoekstra,et al. CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.
[26] H. Hoekstra,et al. Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.
[27] Joop Schaye,et al. The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.
[28] B. Hsieh,et al. THE RED-SEQUENCE CLUSTER SURVEY-2 (RCS-2): SURVEY DETAILS AND PHOTOMETRIC CATALOG CONSTRUCTION , 2010, 1012.3470.
[29] G. W. Pratt,et al. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.
[30] J. Schaye,et al. The physics driving the cosmic star formation history , 2009, 0909.5196.
[31] Eiichiro Komatsu,et al. Galaxy-CMB and galaxy-galaxy lensing on large scales: Sensitivity to primordial non-Gaussianity , 2009, 0910.1361.
[32] J. Schaye,et al. Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.
[33] J. Schaye,et al. Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations , 2009, 0902.1535.
[34] J. Schaye,et al. The effect of photoionization on the cooling rates of enriched, astrophysical plasmas , 2008, 0807.3748.
[35] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[36] J. Schaye,et al. Simulating galactic outflows with kinetic supernova feedback , 2008, 0801.2770.
[37] J. Schaye,et al. On the relation between the Schmidt and Kennicutt-Schmidt star formation laws and its implications for numerical simulations , 2007, 0709.0292.
[38] D. Nagai,et al. Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.
[39] P. Schneider,et al. Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.
[40] David S. Williams. Weighing the odds : a course in probability and statistics , 2001 .
[41] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[42] P. Schneider,et al. A NEW MEASURE FOR COSMIC SHEAR , 1997, astro-ph/9708143.