Model-checking timed automata with deadlines with Uppaal

Timed automata with deadlines (TAD) are a form of timed automata that admit a more natural representation of urgent actions, with the additional advantage of avoiding the most common form of timelocks. We offer a compositional translation of a practically useful subset of TAD to timed safety automata (the well-known variant of timed automata where time progress conditions are expressed by invariants). More precisely, we translate networks of TAD to the modeling language of Uppaal, a state-of-the-art verification tool for timed automata. We also describe an implementation of this translation, which allows Uppaal to aid the design and analysis of TAD models.

[1]  Roberto Barbuti,et al.  Timed automata with urgent transitions , 2004, Acta Informatica.

[2]  Holger Hermanns,et al.  Motor: The MoDeST Tool Environment , 2007 .

[3]  Howard Bowman,et al.  Concurrency Theory: Calculi an Automata for Modelling Untimed and Timed Concurrent Systems , 2005 .

[4]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[5]  Stavros Tripakis,et al.  Analysis of Timed Systems Using Time-Abstracting Bisimulations , 2001, Formal Methods Syst. Des..

[6]  Rodolfo Gómez A Compositional Translation of Timed Automata with Deadlines to Uppaal Timed Automata , 2009, FORMATS.

[7]  Gordon S. Blair,et al.  Formal Specifications of Distributed Multimedia Systems , 1997 .

[8]  Joseph Sifakis,et al.  Modeling Urgency in Timed Systems , 1997, COMPOS.

[9]  Kim Guldstrand Larsen,et al.  The power of reachability testing for timed automata , 2003, Theor. Comput. Sci..

[10]  Kim G. Larsen,et al.  A Tutorial on Uppaal , 2004, SFM.

[11]  Gordon S. Blair,et al.  A framework for the formal specification and verification of distributed multimedia systems. , 1994 .

[12]  Holger Hermanns,et al.  MODEST: A Compositional Modeling Formalism for Hard and Softly Timed Systems , 2006, IEEE Transactions on Software Engineering.

[13]  Wang Yi,et al.  Formal design and analysis of a gear controller , 1998, International Journal on Software Tools for Technology Transfer.

[14]  Diego Latella,et al.  Automatic Verification of a Lip-Synchronisation Protocol Using Uppaal , 1998, Formal Aspects of Computing.

[15]  Rodolfo Gomez Verification of Timed Automata with Deadlines in Uppaal , 2008 .

[16]  Frits W. Vaandrager,et al.  Analysis of a biphase mark protocol with Uppaal and PVS , 2006, Formal Aspects of Computing.

[17]  Frits W. Vaandrager,et al.  Analysis of the zeroconf protocol using UPPAAL , 2006, EMSOFT '06.

[18]  Faron Moller,et al.  A Temporal Calculus of Communicating Systems , 1990, CONCUR.

[19]  Howard Bowman Time and Action Lock Freedom Properties for Timed Automata , 2001, FORTE.

[20]  Joseph Sifakis,et al.  On the Composition of Hybrid Systems , 1998, HSCC.

[21]  Joseph Sifakis,et al.  Compositional Specification of Timed Systems (Extended Abstract) , 1996, STACS.

[22]  Kim G. Larsen,et al.  Formal modeling and analysis of an audio/video protocol: an industrial case study using UPPAAL , 1997, Proceedings Real-Time Systems Symposium.

[23]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..

[24]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[25]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[26]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[27]  Joseph Sifakis,et al.  Tools and Applications II: The IF Toolset , 2004 .

[28]  Joseph Sifakis,et al.  The IF Toolset , 2004, SFM.