Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well

We have experimentally and theoretically investigated, both in the time domain and in the frequency domain, the characteristics of a nanoacoustic mirror, which is a 17-period 8nm∕8nm Al0.7Ga0.3N∕Al0.2Ga0.8N superlattice and its first phononic band gap frequency is centered at ∼280GHz. By using a femtosecond optical pulse to excite and detect the nanoacoustic strain pulses with an In0.2Ga0.8N single quantum well, we directly measured the transient dynamics of the acoustic nanowaves inside a phonon cavity composed of the studied nanoacoustic mirror. The phase-resolved reflection transfer function of the phononic band gap superlattice and the properties of the nanophononic cavity have been experimentally obtained and investigated.

[1]  J. Chyi,et al.  Two-dimensional nanoultrasonic imaging by using acoustic nanowaves , 2006 .

[2]  A. Lemaître,et al.  Nanowave devices for terahertz acoustic phonons , 2006 .

[3]  J. Chyi,et al.  Optical piezoelectric transducer for nano-ultrasonics. , 2005, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[4]  J. Chyi,et al.  Generation of frequency-tunable nanoacoustic waves by optical coherent control , 2005 .

[5]  J. Baumberg,et al.  Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses , 2005 .

[6]  Chi‐Kuang Sun,et al.  Generation of picosecond acoustic pulses using a p‐n junction with piezoelectric effects , 2005 .

[7]  Chang Sub Kim,et al.  Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in In x Ga 1-x N/GaN heterostructures , 2003, cond-mat/0310654.

[8]  J. Chyi,et al.  Reflection property of nano-acoustic wave at the air∕GaN interface , 2004 .

[9]  Yue-Kai Huang,et al.  Terahertz electron distribution modulation in piezoelectric InxGa1-xN/GaN multiple quantum wells using coherent acoustic nanowaves , 2004 .

[10]  Chi‐Kuang Sun,et al.  Transmission of light through quantum heterostructures modulated by coherent acoustic phonons , 2004 .

[11]  G. D. Sanders,et al.  Generation of Coherent Acoustic Phonons in Nitride-Based Semiconductor Nanostructures , 2004 .

[12]  M. Henini,et al.  Terahertz phonon optics in GaAs/AlAs superlattice structures , 2003 .

[13]  S. Denbaars,et al.  Electrical and structural properties of AlGaN/AlGaN superlattice structures grown by metal-organic chemical vapor deposition , 2003 .

[14]  Osamu Matsuda,et al.  Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation , 2002 .

[15]  A. Bruchhausen,et al.  Confinement of acoustical vibrations in a semiconductor planar phonon cavity. , 2002, Physical review letters.

[16]  Christopher J. Stanton,et al.  Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers , 2002 .

[17]  Umesh K. Mishra,et al.  Generation of coherent acoustic phonons in strained GaN thin films , 2001 .

[18]  Sun,et al.  Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields , 2000, Physical review letters.

[19]  Jeremy J. Baumberg,et al.  Ultrafast Acoustic Phonon Ballistics in Semiconductor Heterostructures , 1997 .

[20]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[21]  Tamura,et al.  Theory of acoustic-phonon transmission in finite-size superlattice systems. , 1992, Physical review. B, Condensed matter.

[22]  Zhu,et al.  Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440 GHz. , 1991, Physical review. B, Condensed matter.

[23]  A. Gossard,et al.  Observation of folded acoustic phonons in a semiconductor superlattice , 1980 .

[24]  A. Gossard,et al.  Selective Transmission of High-Frequency Phonons by a Superlattice: The , 1979 .