Ischemia/reperfusion injury in human kidney transplantation: an immunohistochemical analysis of changes after reperfusion.

[1]  M. Al-Qattan Ischaemia-Reperfusion Injury , 1998 .

[2]  T. Aw,et al.  Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. , 1997, Circulation research.

[3]  A. Marchevsky,et al.  Accumulation of platelets in rat syngeneic lung transplants: a potential factor responsible for preservation-reperfusion injury. , 1997, Transplantation.

[4]  K. Nadeau,et al.  The role of the B7 costimulatory pathway in experimental cold ischemia/reperfusion injury. , 1997, The Journal of clinical investigation.

[5]  K. Salmela,et al.  Long-term graft outcome is not necessarily affected by delayed onset of graft function and early acute rejection. , 1997, Transplantation.

[6]  K. Nadeau,et al.  The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. , 1997, The Journal of clinical investigation.

[7]  R. Wolfe,et al.  Delayed graft function: risk factors and implications for renal allograft survival. , 1997, Transplantation.

[8]  J J Zwaginga,et al.  Platelet and fibrin deposition at the damaged vessel wall: cooperative substrates for neutrophil adhesion under flow conditions. , 1997, Blood.

[9]  D. Durand,et al.  A randomized multicenter trial comparing leukocyte function-associated antigen-1 monoclonal antibody with rabbit antithymocyte globulin as induction treatment in first kidney transplantations. , 1996, Transplantation.

[10]  B. Brenner,et al.  Antigen-independent determinants of cadaveric kidney transplant failure. , 1996, JAMA.

[11]  F. Belloc,et al.  Influence of hypoxia and hypoxia-reoxygenation on endothelial P-selectin expression. , 1996, Haemostasis.

[12]  M. Nicholson,et al.  The relative influence of delayed graft function and acute rejection on renal transplant survival , 1996, Transplant international : official journal of the European Society for Organ Transplantation.

[13]  T. Springer,et al.  Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. , 1996, Blood.

[14]  G. Nash,et al.  Continuous activation and deactivation of integrin CD11b/CD18 during de novo expression enables rolling neutrophils to immobilize on platelets. , 1996, Blood.

[15]  P. Halloran,et al.  Delayed graft function in renal transplantation: etiology, management and long-term significance. , 1996, The Journal of urology.

[16]  D. Dunn,et al.  Delayed graft function in the absence of rejection has no long-term impact. A study of cadaver kidney recipients with good graft function at 1 year after transplantation. , 1996, Transplantation.

[17]  K. Messmer,et al.  The Impact of Ischemia/Reperfusion Injury on Specific and Non-Specific, Early and Late Chronic Events After Organ Transplantation , 1996 .

[18]  C. Vesin,et al.  Activated human platelets express β2 integrin , 1996 .

[19]  T. Mayadas,et al.  Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. , 1996, The Journal of clinical investigation.

[20]  E. Tremoli,et al.  Platelet-neutrophil interaction and superoxide anion generation: involvement of purine nucleotides. , 1996, Free radical biology & medicine.

[21]  G. Nash,et al.  Adhesion of flowing neutrophils to cultured endothelial cells after hypoxia and reoxygenation in vitro. , 1995, The American journal of physiology.

[22]  A. Matas,et al.  Delayed graft function, acute rejection, and outcome after cadaver renal transplantation. The multivariate analysis. , 1995, Transplantation.

[23]  P. Halloran,et al.  Ischemic acute tubular necrosis induces an extensive local cytokine response. Evidence for induction of interferon-gamma, transforming growth factor-beta 1, granulocyte-macrophage colony-stimulating factor, interleukin-2, and interleukin-10. , 1995, Transplantation.

[24]  S. Tullius,et al.  Both alloantigen-dependent and -independent factors influence chronic allograft rejection. , 1995, Transplantation.

[25]  T. Peters,et al.  Cold Ischemia And Outcome In 17,937 Cadaveric Kidney Transplants , 1995, Transplantation.

[26]  A. Davenport,et al.  Measurement of malondialdehyde as a marker of oxygen free radical production during renal allograft transplantation and the effect on early graft function. , 1995, Clinical transplantation.

[27]  J. Remacle,et al.  Hypoxic human umbilical vein endothelial cells induce activation of adherent polymorphonuclear leukocytes. , 1994, Blood.

[28]  I. Feuerstein,et al.  Role of P-selectin and leukocyte activation in polymorphonuclear cell adhesion to surface adherent activated platelets under physiologic shear conditions (an injury vessel wall model) , 1994 .

[29]  J. Hakim,et al.  Reactive oxygen species rapidly increase endothelial ICAM-1 ability to bind neutrophils without detectable upregulation. , 1994, Blood.

[30]  P. Grace,et al.  Ischemia-reperfusion injury , 1994 .

[31]  Takaaki Kobayashi,et al.  Effect of prolonged delayed graft function on long-term graft outcome in cadaveric kidney transplantation. , 1994, Clinical transplantation.

[32]  A. Matas,et al.  THE IMPACT OF THE QUALITY OF INITIAL GRAFT FUNCTION ON CADAVER KIDNEY TRANSPLANTS1,2 , 1994, Transplantation.

[33]  K. Messmer,et al.  The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. , 1994, Transplantation.

[34]  I. Feuerstein,et al.  Role of P-selectin and leukocyte activation in polymorphonuclear cell adhesion to surface adherent activated platelets under physiologic shear conditions (an injury vessel wall model). , 1994, Blood.

[35]  L. McIntire,et al.  E-selectin supports neutrophil rolling in vitro under conditions of flow. , 1993, The Journal of clinical investigation.

[36]  T. Springer,et al.  Neutrophils roll on E-selectin. , 1993, Journal of immunology.

[37]  T. Irimura,et al.  Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). , 1993, Journal of immunology.

[38]  J. Sanabria,et al.  Role of platelets in hepatic allograft preservation injury in the rat , 1993, Hepatology.

[39]  M. Lamy,et al.  Evidence for free radical formation during human kidney transplantation. , 1993, Free radical biology & medicine.

[40]  G. Nash,et al.  Selectin-mediated rolling of neutrophils on immobilized platelets. , 1993, Blood.

[41]  Y. Nishizawa,et al.  Clinicopathology of kidneys from brain-dead patients treated with vasopressin and epinephrine. , 1993, Kidney international.

[42]  R. Korthuis,et al.  Reactive oxygen metabolites, neutrophils, and the pathogenesis of ischemic‐tissue/reperfusion , 1993, Clinical cardiology.

[43]  R. Colvin,et al.  A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. , 1993, Transplantation.

[44]  S. Fuggle,et al.  VARIATION IN EXPRESSION OF ENDOTHELIAL ADHESION MOLECULES IN PRETRANSPLANT AND TRANSPLANTED KIDNEYS‐CORRELATION WITH INTRAGRAFT EVENTS , 1993, Transplantation.

[45]  D. Granger,et al.  Leukocyte--endothelial cell adhesion induced by ischemia and reperfusion. , 1993, Canadian journal of physiology and pharmacology.

[46]  A. Malik,et al.  Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion , 1992, The Journal of cell biology.

[47]  C. Benjamin,et al.  Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets , 1992, Nature.

[48]  H. Esterbauer,et al.  Human plasma lipid peroxide levels show a strong transient increase after successful revascularization operations. , 1992, Free radical biology & medicine.

[49]  A. Gaber,et al.  Prediction by postrevascularization biopsies of cadaveric kidney allografts of rejection, graft loss, and preservation nephropathy. , 1992, Transplantation.

[50]  G. Danovitch,et al.  The high cost of delayed graft function in cadaveric renal transplantation. , 1991, Transplantation.

[51]  G. Zimmerman,et al.  Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils , 1991, The Journal of cell biology.

[52]  Rodger P. McEver,et al.  Rapid neutrophil adhesion to activated endothelium mediated by GMP-140 , 1990, Nature.

[53]  P. Halloran,et al.  Increased major histocompatibility complex antigen expression in unilateral ischemic acute tubular necrosis in the mouse. , 1990, Transplantation.

[54]  P. Sims,et al.  Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. , 1989, The Journal of biological chemistry.

[55]  J. McGee,et al.  Monoclonal antibody EBM/11: high cellular specificity for human macrophages. , 1988, Journal of clinical pathology.

[56]  W. Bennett,et al.  SIGNIFICANCE OF DELAYED GRAFT FUNCTION IN CYCLOSPORINE‐TREATED RECIPIENTS OF CADAVER KIDNEY TRANSPLANTS , 1988, Transplantation.

[57]  R. Allen,et al.  Triple therapy in cadaver renal transplantation , 1988, The British journal of surgery.

[58]  S. Fuggle,et al.  SEQUENTIAL ANALYSIS OF HLA‐CLASS II ANTIGEN EXPRESSION IN HUMAN RENAL ALLOGRAFTS Induction of Tubular class II Antigens and Correlation with Clinical Parameters , 1986, Transplantation.

[59]  V. Nachmias,et al.  Platelet activation. , 2020, Arteriosclerosis.

[60]  N. Hogg,et al.  Monoclonal antibodies specific for human monocytes, granulocytes and endothelium. , 1984, Immunology.

[61]  W K Vaughn,et al.  THE DETRIMENTAL EFFECTS OF DELAYED GRAFT FUNCTION IN CADAVER DONOR RENAL TRANSPLANTATION , 1984, Transplantation.

[62]  R. McEver,et al.  A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. , 1984, The Journal of biological chemistry.

[63]  R. Andrews,et al.  Normal and malignant human myelocytic and monocytic cells identified by monoclonal antibodies. , 1982, Journal of immunology.

[64]  J. McKenzie,et al.  STUDIES WITH A MONOCLONAL ANTIBODY ON THE DISTRIBUTION OF THY‐1 IN THE LYMPHOID AND EXTRACELLULAR CONNECTIVE TISSUES OF THE DOG , 1981, Transplantation.

[65]  R. Callard,et al.  Distinctive functional characteristics of human „T”︁ lymphocytes defined by E rosetting or a monoclonal anti‐T cell antibody , 1981, European journal of immunology.

[66]  J. Selkon,et al.  β-LACTAMASE-PRODUCING ANÆROBES , 1980, The Lancet.

[67]  J. Fabre,et al.  Monoclonal antibody to a human leukocyte‐specific membrane glycoprotein probably homologous to the leukocyte‐common (L‐C) antigen of the rat , 1980, European journal of immunology.

[68]  P. Parham,et al.  A monoclonal antibody that recognizes an antigenic determinant shared by HLA A2 and B17. , 1980, Human immunology.

[69]  D. G. Osborne,et al.  Histologic, ultrastructural, and immunomicroscopic findings in 96 one hour human renal allograft biopsy specimens. Immunologic and clinical significance. , 1980, Human pathology.

[70]  C. Barnstable,et al.  Monoclonal Antibodies for Analysis of the HLA System , 1979, Immunological reviews.

[71]  D. L. Westbroek,et al.  Prognostic value for immediate function of one-hour renal allograft biopsy. , 1975, British medical journal.

[72]  L. Perloff,et al.  Value of one-hour renal-allograft biopsy. , 1973, Lancet.

[73]  P. Kincaid‐smith,et al.  Immediate renal-graft biopsy and subsequent rejection. , 1968, Lancet.

[74]  P. Morris,et al.  "Hyperacute" renal-homograft rejection in man. , 1968, The New England journal of medicine.

[75]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.