Experimental realization of long-distance entanglement between spins in antiferromagnetic quantum spin chains
暂无分享,去创建一个
V. Saligrama | Venkatesh Saligrama | A. Revcolevschi | L. Regnault | C. Marin | S. Raymond | Alexandre Revcolevschi | P. Monceau | G. Reményi | C. Paulsen | L. P. Regnault | Carley Paulsen | S. Sahling | J. E. Lorenzo | György Remenyi | P. Monceau | C. Marin | Stephane Raymond | S. Sahling | J. Lorenzo
[1] N. Kharchenko. On the 80th anniversary of antiferromagnetism , 2014 .
[2] S. Aldoshin,et al. Quantum entanglement and quantum discord in magnetoactive materials (Review Article) , 2014 .
[3] C. Mitra,et al. Signature of quantum entanglement in NH4CuPO4·H2O , 2014, 1906.02769.
[4] C. Mitra,et al. Probing quantum discord in a Heisenberg dimer compound , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.
[5] C. Mitra,et al. Experimental detection of thermal entanglement in a molecular chain , 2013 .
[6] C. Mitra,et al. Experimental quantification of entanglement through heat capacity , 2013, 1309.7767.
[7] Yazhen Wang. Quantum Computation and Quantum Information , 2012, 1210.0736.
[8] T. Paterek,et al. The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.
[9] Tanmoy Chakraborty,et al. Experimental detection of quantum information sharing and its quantification in quantum spin systems , 2011, 1109.1640.
[10] L. Regnault,et al. Magnetic chirality of the spin triplet in the spin-ladder compound Sr14Cu24O41as seen via polarized inelastic neutron scattering , 2011 .
[11] A. Revcolevschi,et al. Macroscopic quantum coherence of the spin triplet in the spin-ladder compound Sr14Cu24O41. , 2010, Physical review letters.
[12] Pasquale Sodano,et al. Entanglement routers using macroscopic singlets. , 2010, Physical review letters.
[13] C. Marín,et al. Crystal growth and characterization of two-leg spin ladder compounds: Sr14Cu24O41 and Sr2Ca12CU24O41 , 2009 .
[14] Pasquale Sodano,et al. Kondo cloud mediated long-range entanglement after local quench in a spin chain , 2008, 0811.2677.
[15] S. Luo. Quantum discord for two-qubit systems , 2008 .
[16] L. Campos Venuti,et al. Qubit teleportation and transfer across antiferromagnetic spin chains. , 2007, Physical review letters.
[17] V. Vedral,et al. Entanglement in many-body systems , 2007, quant-ph/0703044.
[18] A. Revcolevschi,et al. Dynamical spin chirality and spin anisotropy in Sr 14 Cu 24 O 41 : A neutron polarization analysis study , 2007 .
[19] Sougato Bose,et al. Quantum communication through spin chain dynamics: an introductory overview , 2007, 0802.1224.
[20] B. Büchner,et al. One- and two-triplon spectra of a cuprate ladder. , 2006, Physical review letters.
[21] L. Balicas,et al. Dimensional reduction at a quantum critical point , 2006, Nature.
[22] J. Akimitsu,et al. The spin-ladder and spin-chain system (La,Y,Sr,Ca)14Cu24O41: Electronic phases, charge and spin dynamics , 2006 .
[23] L. Venuti,et al. Long-distance entanglement in spin systems. , 2006, Physical review letters.
[24] M. Imai,et al. 1 ∕ 3 magnetization plateau observed in the spin- 1 ∕ 2 trimer chain compound Cu 3 ( P 2 O 6 O H ) 2 , 2006 .
[25] K. Choi,et al. Magnetism of hole-dopedCuO2spin chains inSr14Cu24O41: Experimental and numerical results , 2006 .
[26] A. Revcolevschi,et al. Magnetization of hole-doped Cu O 2 spin chains in Sr 14 − x Ca x Cu 24 O 41 , 2005, cond-mat/0511110.
[27] M. Wiesniak,et al. Magnetic susceptibility as a macroscopic entanglement witness , 2005, quant-ph/0503037.
[28] I. Heinmaa,et al. Magnetic-field-induced condensation of triplons in Han Purple pigment BaCuSi2O6. , 2004, Physical review letters.
[29] M. Lepetit,et al. Influence of the incommensurability in Sr14-xCaxCu24O41 Family Compounds. , 2003, Physical review letters.
[30] H. Mutka,et al. Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3 , 2003, Nature.
[31] S. Bose. Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.
[32] P. Littlewood,et al. Sliding Density Wave in Sr14Cu24O41 Ladder Compounds , 2002, Science.
[33] M. Nielsen,et al. Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.
[34] W. Zurek,et al. Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.
[35] K. Choi,et al. Interplay of spin and charge dynamics in Sr 14 − x Ca x Cu 24 O 41 , 2001 .
[36] V. Vedral,et al. Classical, quantum and total correlations , 2001, quant-ph/0105028.
[37] S. Bose,et al. Natural thermal and magnetic entanglement in the 1D Heisenberg model. , 2000, Physical review letters.
[38] J. Akimitsu,et al. UvA-DARE ( Digital Academic Repository ) Hole distribution for ( Sr , Ca , Y , La ) 14 Cu 24 O 41 ladder compounds studied by x-ray absorption spectroscopy , 2000 .
[39] A. Panchula,et al. Thermodynamics of spin S = 1 / 2 antiferromagnetic uniform and alternating-exchange Heisenberg chains , 2000, cond-mat/0003271.
[40] F. Parmigiani,et al. Behaviour of the Zhang–Rice singlet in CuGeO3, Bi2CuO4, and CuO , 2000 .
[41] H. Kageyama,et al. Exact Dimer Ground State and Quantized Magnetization Plateaus in the Two-Dimensional Spin System SrCu 2 ( BO 3 ) 2 , 1999 .
[42] A. Revcolevschi,et al. Spin dynamics in the magnetic chain arrays of Sr 14 Cu 24 O 41 : A neutron inelastic scattering investigation , 1998, cond-mat/9809009.
[43] G. Shirane,et al. QUASI-TWO-DIMENSIONAL HOLE ORDERING AND DIMERIZED STATE IN THE CUO2-CHAIN LAYERS IN SR14CU24O41 , 1998, cond-mat/9808083.
[44] T. Goto,et al. Magnetization Plateaus in NH4CuCl3 , 1998 .
[45] T. U. O. Tokyo,et al. Spin dynamics of the spin-ladder dimer-chain material Sr 14 Cu 24 O 41 , 1997, cond-mat/9711053.
[46] T. Tohyama,et al. ELECTRONIC STATES AND MAGNETIC PROPERTIES OF EDGE-SHARING CU-O CHAINS , 1997, cond-mat/9708232.
[47] H. Eisaki,et al. Optical Study of the Sr-14-xCaxCu O-2441 System: Evidence for Hole-Doped Cu O-23 Ladders , 1997 .
[48] I. Affleck,et al. Magnetization Plateaus in Spin Chains: “Haldane Gap” for Half-Integer Spins , 1996, cond-mat/9610168.
[49] T. M. Rice,et al. Surprises on the Way from One- to Two-Dimensional Quantum Magnets: The Ladder Materials , 1995, Science.
[50] Golinelli,et al. sigma -model study of Haldane-gap antiferromagnets. , 1994, Physical review. B, Condensed matter.
[51] Fisher,et al. Random antiferromagnetic quantum spin chains. , 1994, Physical review. B, Condensed matter.
[52] I. Szumiel,et al. The effect of combined treatment with a platinum complex and ionizing radiation on chinese hamster ovary cells in vitro. , 1976, British Journal of Cancer.
[53] Michael E. Fisher,et al. Linear Magnetic Chains with Anisotropic Coupling , 1964 .
[54] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[55] Hamed Niroumand,et al. Experimental and Numerical Results , 2017 .
[56] A. Zeilinger,et al. Cru ial Role of Quantum Entanglementin Bulk Properties of Solids , 2009 .
[57] K. Choi,et al. Magnetism of hole-doped CuO2 spin chains in Sr14Cu24O41 : Experimental and numerical results , 2006 .
[58] Timothy C. Ralph,et al. Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).
[59] H. Eisaki,et al. Spin and charge dynamics in the hole-doped one-dimensional-chain-ladder composite material Sr 14 Cu 24 O 41 : Cu NMR/NQR studies , 1998 .