Trajectory, aerothermal conditions, and thermal protection system mass for the MARS 2001 aerocapture mission
暂无分享,去创建一个
Ethiraj Venkatapathy | Frank S. Milos | Periklis Papadopoulos | P. Wercinski | Michael E. Tauber | Yih-Kanq Chen | W. Henline | H. Tran
[1] Daniel J. Rasky,et al. Silicone impregnated reusable ceramic ablators for Mars follow-on missions , 1996 .
[2] R. Mitcheltree. Aerothermodynamics of a MESUR Martian entry , 1993 .
[3] Daniel J. Rasky,et al. Fully Implicit Ablation and Thermal Response Program for Spacecraft Heatshield Analysis , 1998 .
[4] M. E. Tauber,et al. Mars Pathfinder Trajectory Based Heating and Ablation Calculations , 1995 .
[5] Lily Yang,et al. Use of atmospheric braking during Mars missions , 1990 .
[6] K. Sutton,et al. A general stagnation-point convective heating equation for arbitrary gas mixtures , 1971 .
[7] Ethiraj Venkatapathy,et al. Aerothermal heating simulations with surface catalysis for the Mars 2001 aerocapture mission , 1997 .
[8] G. Walberg. A Survey of Aeroassisted Orbit Transfer , 1985 .
[9] Walter C. Engelund,et al. Mars Pathfinder six-degree-of-freedom entry analysis , 1995 .
[10] Yih-Kanq Chen,et al. Navier-Stokes solutions with surface catalysis for Martian atmospheric entry , 1992 .
[11] M. Tauber,et al. The use of atmospheric braking during Mars missions , 1989 .
[12] J. G. Marvin,et al. Convective heat transfer in planetary gases , 1966 .
[13] E. M. Repic,et al. Aerobraking as a potential planetary capture mode. , 1968 .
[14] Michael E. Tauber,et al. A review of high-speed, convective, heat-transfer computation methods , 1989 .