Statistical methods and parameters: Tools to generate and evaluate theoretical in silico models

[1]  Nina Nikolova-Jeliazkova,et al.  QSAR Applicability Domain Estimation by Projection of the Training Set in Descriptor Space: A Review , 2005, Alternatives to laboratory animals : ATLA.

[2]  Boris Mirkin,et al.  A Measure of Domain of Applicability for QSAR Modelling Based on Intelligent K-Means Clustering , 2007 .

[3]  L. Pardo,et al.  Molecular determinants of MAO selectivity in a series of indolylmethylamine derivatives: biological activities, 3D-QSAR/CoMFA analysis, and computational simulation of ligand recognition. , 2000, Journal of medicinal chemistry.

[4]  S. Weisberg Plots, transformations, and regression , 1985 .

[5]  V. Nguyen-Cong,et al.  Using multivariate adaptive regression splines to QSAR studies of dihydroartemisinin derivatives. , 1996, European journal of medicinal chemistry.

[6]  W. Massy Principal Components Regression in Exploratory Statistical Research , 1965 .

[7]  S. Wold,et al.  Partial least squares analysis with cross‐validation for the two‐class problem: A Monte Carlo study , 1987 .

[8]  Paola Gramatica,et al.  Principles of QSAR models validation: internal and external , 2007 .

[9]  Joshua M. Stuart,et al.  MICROARRAY EXPERIMENTS : APPLICATION TO SPORULATION TIME SERIES , 1999 .

[10]  Takahiro Suzuki,et al.  Classification of Environmental Estrogens by Physicochemical Properties Using Principal Component Analysis and Hierarchical Cluster Analysis , 2001, J. Chem. Inf. Comput. Sci..

[11]  Márcia M. C. Ferreira,et al.  Basic validation procedures for regression models in QSAR and QSPR studies: theory and application , 2009 .

[12]  W. Dunn,et al.  Genetic Partial Least Squares in QSAR , 1996 .

[13]  Jürgen Bajorath,et al.  Molecular Descriptors for Effective Classification of Biologically Active Compounds Based on Principal Component Analysis Identified by a Genetic Algorithm , 2000, J. Chem. Inf. Comput. Sci..

[14]  Anton J. Hopfinger,et al.  Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships , 1994, J. Chem. Inf. Comput. Sci..

[15]  Nikolai S. Zefirov,et al.  QSAR for Boiling Points of "Small" Sulfides. Are the "High-Quality Structure-Property-Activity Regressions" the Real High Quality QSAR Models? , 2001, J. Chem. Inf. Comput. Sci..

[16]  Hervé Abdi,et al.  Partial least squares methods: partial least squares correlation and partial least square regression. , 2013, Methods in molecular biology.

[17]  A. Jain,et al.  Validation of QSAR Models-Strategies and Importance , 2011 .

[18]  G Schneider,et al.  Artificial neural networks for computer-based molecular design. , 1998, Progress in biophysics and molecular biology.

[19]  H. Kubinyi,et al.  Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. , 1998, Journal of medicinal chemistry.

[20]  J. Habbema,et al.  Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. , 2001, Journal of clinical epidemiology.

[21]  David Hartsough,et al.  Toward an Optimal Procedure for Variable Selection and QSAR Model Building , 2001, J. Chem. Inf. Comput. Sci..

[22]  Arnold J. Stromberg,et al.  Computing the Exact Least Median of Squares Estimate and Stability Diagnostics in Multiple Linear Regression , 1993, SIAM J. Sci. Comput..

[23]  Kunal Roy,et al.  Exploring 2D and 3D QSARs of 2,4-diphenyl-1,3-oxazolines for ovicidal activity against Tetranychus urticae , 2009 .

[24]  Rajarshi Guha,et al.  Determining the Validity of a QSAR Model - A Classification Approach , 2005, J. Chem. Inf. Model..

[25]  Airfares 2002Q,et al.  MULTIPLE LINEAR REGRESSION , 2006, Statistical Methods for Biomedical Research.

[26]  Ulf Norinder,et al.  Single and domain mode variable selection in 3D QSAR applications , 1996 .

[27]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[28]  Kunal Roy,et al.  On some aspects of validation of predictive quantitative structure–activity relationship models , 2007, Expert opinion on drug discovery.