Studies on metabolic regulation using NMR spectroscopy.

The effects of hypoxia and hypoglycaemia on cerebral metabolism and calcium have been studied using multinuclear magnetic resonance spectroscopy. 13C MRS showed that severe hypoxia did not cause any further increase in metabolic flux into lactate seen in mild hypoxia, but there was a further increase in 13C labelling of alanine and glycerol 3-phosphate. These results are discussed in terms of the ability of lactate dehydrogenase to maintain normal levels of NADH in mild hypoxia, but not in severe hypoxia. We conclude that glycerol 3-phosphate and alanine may provide novel means of monitoring severe hypoxia whereas lactate is a reliable indicator only of mild hypoxia. 19F- and 31P NMR spectroscopy showed that neither hypoxia nor hypoglycaemia alone caused any significant change in [Ca2+]i. Combined sequential insults (hypoxia, followed by hypoxia plus hypoglycaemia), or vice versa, produced a 100% increase in [Ca2+]i, whereas immediate exposure to the combined insult (hypoxia plus hypoglycaemia) resulted in a large 5-fold increase in [Ca2+]i, with severe irreversible effects on the energy state. These results are discussed in terms of metabolic adaptation to the single type of insult, which renders the tissue less vulnerable to the combined insult. The effects of this combined insult are far more severe than those caused by glutamate or NMDA, which throws doubt on the current excitoxic hypothesis of cell damage.