Quantum Codes From Toric Surfaces

A theory for constructing quantum error correcting codes from Toric surfaces by the Calderbank-Shor-Steane method is presented. In particular, we study the method on toric Hirzebruch surfaces. The results are obtained by constructing a dualizing differential form for the toric surface and by using the cohomology and the intersection theory of toric varieties.

[1]  Günter Ewald,et al.  CONVEX BODIES AND ALGEBRAIC GEOMETRY , 1985 .

[2]  Johan P. Hansen,et al.  Toric Surfaces and Error-correcting Codes , 2000 .

[3]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[4]  Reza Akhtar,et al.  Toric residue codes: I , 2011, Finite Fields Their Appl..

[5]  Ernst Kunz,et al.  Residues and Duality for Projective Algebraic Varieties , 2008 .

[6]  P. D. Drummond,et al.  A ATOMIC , MOLECULAR , AND OPTICAL PHYSICS , 1999 .

[7]  David Joyner,et al.  Toric Codes over Finite Fields , 2002, Applicable Algebra in Engineering, Communication and Computing.

[8]  Johan P. Hansen,et al.  Toric Varieties Hirzebruch Surfaces and Error-Correcting Codes , 2002, Applicable Algebra in Engineering, Communication and Computing.

[9]  P. Griffiths Variations on a theorem of Abel , 1976 .

[10]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[11]  Helmut G. Katzgraber,et al.  Strong resilience of topological codes to depolarization , 2012, 1202.1852.

[12]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[13]  A. Dickenstein,et al.  Residues in toric varieties , 1995, Compositio Mathematica.

[14]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[15]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .

[16]  Tadao Oda Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties , 1987 .

[17]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[18]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[19]  J. Brasselet Introduction to toric varieties , 2004 .

[20]  J. Lipman Dualizing sheaves, differentials and residues on algebraic varieties , 1984 .

[21]  S. Litsyn,et al.  Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.

[22]  S. Hansen,et al.  Error-Correcting Codes from Higher-Dimensional Varieties , 2001 .

[23]  Z. Teitler,et al.  TORIC VARIETIES , 2010 .