Vitamin D receptor expression in mature osteoclasts reduces bone loss due to low dietary calcium intake in male mice

[1]  R. Rizza,et al.  Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism , 2020, Nature Communications.

[2]  G. Carmeliet,et al.  Vdr expression in osteoclast precursors is not critical in bone homeostasis , 2019, The Journal of Steroid Biochemistry and Molecular Biology.

[3]  H. Morris,et al.  Evidence for altered osteoclastogenesis in splenocyte cultures from VDR knockout mice , 2018, The Journal of Steroid Biochemistry and Molecular Biology.

[4]  H. Morris,et al.  Absence of vitamin D receptor in mature osteoclasts results in altered osteoclastic activity and bone loss , 2017, The Journal of Steroid Biochemistry and Molecular Biology.

[5]  Takashi Nakamura,et al.  VDR in Osteoblast‐Lineage Cells Primarily Mediates Vitamin D Treatment‐Induced Increase in Bone Mass by Suppressing Bone Resorption , 2017, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[6]  H. DeLuca,et al.  Identification of the Vitamin D Receptor in Osteoblasts and Chondrocytes But Not Osteoclasts in Mouse Bone , 2014, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[7]  P. Chambon,et al.  Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. , 2013, Endocrinology.

[8]  Luc Duong,et al.  The osteoclast, bone remodelling and treatment of metabolic bone disease , 2012, European journal of clinical investigation.

[9]  A. Turner,et al.  Vitamin D metabolism within bone cells: Effects on bone structure and strength , 2011, Molecular and Cellular Endocrinology.

[10]  T. Chambers,et al.  How are osteoclasts induced to resorb bone? , 2011, Annals of the New York Academy of Sciences.

[11]  Lynda F. Bonewald,et al.  Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway , 2011, PloS one.

[12]  N. Athanasou The osteoclast—what’s new? , 2011, Skeletal Radiology.

[13]  R. Faccio,et al.  Osteoclast motility: Putting the brakes on bone resorption , 2011, Ageing Research Reviews.

[14]  H. Morris,et al.  Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. , 2010, Endocrinology.

[15]  H. Morris,et al.  The metabolism of 25-(OH)vitamin D3 by osteoclasts and their precursors regulates the differentiation of osteoclasts , 2010, The Journal of Steroid Biochemistry and Molecular Biology.

[16]  A. Turner,et al.  Bone CYP27B1 gene expression is increased with high dietary calcium and in mineralising osteoblasts , 2010, The Journal of Steroid Biochemistry and Molecular Biology.

[17]  V. Everts,et al.  Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. , 2009, Biochimica et biophysica acta.

[18]  Tiina Laitala-Leinonen,et al.  Osteoclast lineage and function. , 2008, Archives of biochemistry and biophysics.

[19]  H. E. Maclean,et al.  Current and future approaches using genetically modified mice in endocrine research. , 2006, American journal of physiology. Endocrinology and metabolism.

[20]  A. Cassady,et al.  Transgenic mice that express Cre recombinase in osteoclasts , 2004, Genesis.

[21]  A. Evdokiou,et al.  RANKL Expression Is Related to the Differentiation State of Human Osteoblasts , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[22]  L. Bonewald,et al.  MLO‐Y4 Osteocyte‐Like Cells Support Osteoclast Formation and Activation , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[23]  S. Geary,et al.  Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. , 2001, Bone.

[24]  S. Geary,et al.  Bidirectional signaling between stromal and hemopoietic cells regulates interleukin-1 expression during human osteoclast formation. , 1999, Bone.

[25]  R. Baron,et al.  Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Haussler,et al.  Molecular Mechanisms of Vitamin D Action , 2012, Calcified Tissue International.