Dynamic coordination in the brain : from neurons to mind

A fundamental shift is occurring in neuroscience and related disciplines. In the past, researchers focused on functional specialization of the brain, discovering complex processing strategies based on convergence and divergence in slowly adapting anatomical architectures. Yet for the brain to cope with ever-changing and unpredictable circumstances, it needs strategies with richer interactive short-term dynamics. Recent research has revealed ways in which the brain effectively coordinates widely distributed and specialized activities to meet the needs of the moment. This book explores these findings, examining the functions, mechanisms, and manifestations of distributed dynamical coordination in the brain and mind across different species and levels of organization. The book identifies three basic functions of dynamic coordination: contextual disambiguation, dynamic grouping, and dynamic routing. It considers the role of dynamic coordination in temporally structured activity and explores these issues at different levels, from synaptic and local circuit mechanisms to macroscopic system dynamics, emphasizing their importance for cognition, behavior, and psychopathology. Contributors: Evan Balaban, Gyorgy Buzsaki, Nicola S. Clayton, Maurizio Corbetta, Robert Desimone, Kamran Diba, Shimon Edelman, Andreas K. Engel, Yves Fregnac, Pascal Fries, Karl Friston, Ann Graybiel, Sten Grillner, Uri Grodzinski, John-Dylan Haynes, Laurent Itti, Erich D. Jarvis, Jon H. Kaas, J.A. Scott Kelso, Peter Konig, Nancy J. Kopell, Ilona Kovacs, Andreas Kreiter, Anders Lansner, Gilles Laurent, Jorg Lucke, Mikael Lundqvist, Angus MacDonald, Kevan Martin, Mayank Mehta, Lucia Melloni, Earl K. Miller, Bita Moghaddam, Hannah Monyer, Edvard I. Moser, May-Britt Moser, Danko Nikolic, William A. Phillips, Gordon Pipa, Constantin Rothkopf, Terrence J. Sejnowski, Steven M. Silverstein, Wolf Singer, Catherine Tallon-Baudry, Roger D. Traub, Jochen Triesch, Peter Uhlhaas, Christoph von der Malsburg, Thomas Weisswange, Miles Whittington, Matthew Wilson

[1]  Munindar P. Singh,et al.  Service-Oriented Computing: Semantics, Processes, Agents , 2010 .

[2]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[3]  J. Hupé,et al.  Bistability for audiovisual stimuli: Perceptual decision is modality specific. , 2008, Journal of vision.

[4]  Rina Dechter,et al.  From Local to Global Consistency , 1990, Artif. Intell..

[5]  W. Singer,et al.  In search of common foundations for cortical computation , 1997, Behavioral and Brain Sciences.

[6]  John E. Hummel,et al.  Distributing structure over time , 1993, Behavioral and Brain Sciences.

[7]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[8]  A. Thiele,et al.  Attention – oscillations and neuropharmacology , 2009, The European journal of neuroscience.

[9]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[10]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[11]  W. Singer,et al.  Phase Sensitivity of Synaptic Modifications in Oscillating Cells of Rat Visual Cortex , 2004, The Journal of Neuroscience.

[12]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[13]  P. Dayan,et al.  Space and time in visual context , 2007, Nature Reviews Neuroscience.

[14]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[15]  Geoffrey E. Hinton,et al.  Self-organizing neural network that discovers surfaces in random-dot stereograms , 1992, Nature.

[16]  D. Lindsley,et al.  25 – Brain Mechanisms of Attention and Perception1 , 1980 .

[17]  Y. Frégnac,et al.  The “silent” surround of V1 receptive fields: theory and experiments , 2003, Journal of Physiology-Paris.

[18]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[19]  Dario Floreano,et al.  Contextually guided unsupervised learning using local multivariate binary processors , 1998, Neural Networks.

[20]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[21]  S. Edelman Computing the mind , 2008 .

[22]  D. W. Wheeler,et al.  Brightness Induction: Rate Enhancement and Neuronal Synchronization as Complementary Codes , 2006, Neuron.

[23]  Michael W. Spratling Predictive coding as a model of biased competition in visual attention , 2008, Vision Research.

[24]  Joshua D. Greene,et al.  Trends in Cognitive Sciences–How (and Where) Does Moral Judgment Work? , 2010 .

[25]  I. Kovács Human development of perceptual organization , 2000, Vision Research.

[26]  Paul H. E. Tiesinga,et al.  Rapid Temporal Modulation of Synchrony by Competition in Cortical Interneuron Networks , 2004, Neural Computation.

[27]  T. Sejnowski,et al.  Book Review: Gain Modulation in the Central Nervous System: Where Behavior, Neurophysiology, and Computation Meet , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[28]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  P. Rakic Confusing cortical columns , 2008, Proceedings of the National Academy of Sciences.

[30]  Miles A Whittington,et al.  Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro , 2003, Trends in Neurosciences.

[31]  Ch. von der Malsburg,et al.  A neural cocktail-party processor , 1986, Biological Cybernetics.

[32]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Sanjoy Dasgupta,et al.  Adaptive Control Processes , 2010, Encyclopedia of Machine Learning and Data Mining.

[34]  G. Buzsáki Rhythms of the brain , 2006 .

[35]  Konrad Paul Kording,et al.  Learning with two sites of synaptic integration , 2000, Network.

[36]  W A Phillips,et al.  Segregation by onset asynchrony. , 2008, Journal of vision.

[37]  Thierry Moyaux,et al.  Towards Service-Oriented Ontology-Based Coordination , 2006, 2006 IEEE International Conference on Web Services (ICWS'06).

[38]  Jorge V. José,et al.  Inhibitory synchrony as a mechanism for attentional gain modulation , 2004, Journal of Physiology-Paris.

[39]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[40]  B J Craven,et al.  Interactions between coincident and orthogonal cues to texture boundaries , 2000, Perception & psychophysics.

[41]  Karl J. Friston The disconnection hypothesis , 1998, Schizophrenia Research.

[42]  Jörg Lücke,et al.  Rapid Convergence to Feature Layer Correspondences , 2008, Neural Computation.

[43]  Michael W. Spratling,et al.  A feedback model of perceptual learning and categorization , 2006, Visual Cognition.

[44]  H. Spekreijse,et al.  Contextual modulation in primary visual cortex and scene perception , 2000 .

[45]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[46]  T. Albright,et al.  Contextual influences on visual processing. , 2002, Annual review of neuroscience.

[47]  Cameron S Carter,et al.  Prefrontal Cortex Guides Context-Appropriate Responding during Language Production , 2004, Neuron.

[48]  John E. Hummel,et al.  Relational Reasoning in a Neurally Plausible Cognitive Architecture , 2005 .

[49]  W. Singer,et al.  Synchronization of Neural Activity across Cortical Areas Correlates with Conscious Perception , 2007, The Journal of Neuroscience.

[50]  S. Sutherland Seeing things , 1989, Nature.

[51]  Edward K. Vogel,et al.  The capacity of visual working memory for features and conjunctions , 1997, Nature.

[52]  Derek C. Penn,et al.  Darwin's mistake: Explaining the discontinuity between human and nonhuman minds , 2008, Behavioral and Brain Sciences.

[53]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[54]  G. Ermentrout Dynamic patterns: The self-organization of brain and behavior , 1997 .

[55]  A. Treisman Solutions to the Binding Problem Progress through Controversy and Convergence , 1999, Neuron.

[56]  N. Kr Multi-modal estimation of collinearity and parallelism in natural image sequences* , 2002 .

[57]  R. Traub,et al.  Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. , 2008, Schizophrenia bulletin.

[58]  T. S. Lee,et al.  Gestalten of Today: Early Processing of Visual Contours and Surfaces , 1996 .

[59]  C. Malsburg How Are Neural Signals Related to Each Other and to the World , 2002 .

[60]  A. Graybiel,et al.  Temporal and spatial characteristics of tonically active neurons of the primate's striatum. , 1995, Journal of neurophysiology.

[61]  Christian Wolff,et al.  A recurrent dynamic model for correspondence-based face recognition. , 2008, Journal of vision.

[62]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[63]  V.A.F. Lamme,et al.  Beyond the classical receptive field: Contextual modulation of V1 responses , 2004 .

[64]  J Kay,et al.  Measures for investigating the contextual modulation of information transmission. , 1996, Network.

[65]  W. A. Phillips,et al.  Where the rubber meets the road: The importance of implementation , 2003, Behavioral and Brain Sciences.

[66]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.