An algorithm for computing the cumulative distribution function for magnitude squared coherence estimates

A simple and efficient algorithm is developed for computing the conditional cumulative distribution function for estimates of the magnitude-squared coherence between two wide-sense stationary real zero-mean Gaussian stochastic processes. This algorithm is applied to computing the confidence bounds for the estimates.

[1]  J. J. Hill,et al.  An analytical approach to the design of nonrecursive digital filters , 1975 .

[2]  Legendre polynomial expressions for the probability density function of magnitude-squared coherence estimates , 1981 .

[3]  G. Clifford Carter,et al.  Confidence bounds for magnitude-squared coherence estimates , 1978, ICASSP.

[4]  L. Rabiner The design of finite impulse response digital filters using linear programming techniques , 1972 .

[5]  G. Carter,et al.  Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing , 1973 .

[6]  J. Rhodes,et al.  Microwave Networks with Constant Delay , 1967, IEEE Transactions on Circuit Theory.

[7]  O. Herrmann,et al.  Practical design rules for optimum finite impulse response low-pass digital filters , 1973 .

[8]  L. Rabiner Linear program design of finite impulse response (FIR) digital filters , 1972 .

[9]  O. Herrmann Design of nonrecursive digital filters with linear phase , 1970 .

[10]  R. Haubrich Earth noise, 5 to 500 millicycles per second: 1. Spectral stationarity, normality, and nonlinearity , 1965 .

[12]  N. R. Goodman ON THE JOINT ESTIMATION OF THE SPECTRA, COSPECTRUM AND QUADRATURE SPECTRUM OF A TWO-DIMENSIONAL STATIONARY GAUSSIAN PROCESS , 1957 .

[13]  G. Carter Receiver operating characteristics for a linearly thresholded coherence estimation detector , 1977 .

[14]  J. McClellan,et al.  Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase , 1972 .