Policies for elementary link generation in quantum networks

Protocols in a quantum network involve multiple parties performing actions on their quantum systems in a carefully orchestrated manner over time in order to accomplish a given task. This sequence of actions over time is often referred to as a strategy, or policy. In this work, we consider policy optimization in a quantum network. Specifically, as a first step towards developing full-fledged quantum network protocols, we consider policies for generating elementary links in a quantum network. We start by casting elementary link generation as a quantum partially observable Markov decision process, as defined in [Phys. Rev. A 90, 032311 (2014)]. Then, we analyze in detail the commonly used memory cutoff policy. Under this policy, once a link is established it is kept in quantum memory for some amount $t^{\star}$ of time, called the cutoff, before it is discarded and link generation is reattempted. For this policy, we determine the average quantum state of the elementary link as a function of time for an arbitrary number of nodes in the link, as well as the average fidelity of the link as a function of time for any noise model for the quantum memories. We then show how optimal policies can be obtained in the finite-horizon setting using dynamic programming.

[1]  David Elkouss,et al.  Linear programs for entanglement and key distribution in the quantum internet , 2018, Communications Physics.

[2]  P. Kwiat,et al.  Design and analysis of communication protocols for quantum repeater networks , 2015, 1505.01536.

[3]  Takao Nishizeki Planar Graph Problems , 1990 .

[4]  W. Dur,et al.  Modular architectures for quantum networks , 2017, 1711.02606.

[5]  dek,et al.  Parameter regimes for a single sequential quantum repeater , 2018 .

[6]  Rodney Van Meter,et al.  Quantum link bootstrapping using a RuleSet-based communication protocol , 2019, Physical Review A.

[7]  Laszlo Gyongyosi,et al.  Entanglement-Gradient Routing for Quantum Networks , 2017, Scientific Reports.

[8]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[9]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[10]  P. Kok,et al.  Statistical analysis of quantum-entangled-network generation , 2018, Physical Review A.

[11]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[12]  Hiroshi Esaki,et al.  Protocol design for quantum repeater networks , 2011, AINTEC '11.

[13]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[14]  Hans-J. Briegel,et al.  Framework for learning agents in quantum environments , 2015, ArXiv.

[15]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[16]  Eneet Kaur,et al.  Multipartite entanglement and secret key distribution in quantum networks , 2019 .

[17]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[18]  Christoph Simon,et al.  Towards a global quantum network , 2017, Nature Photonics.

[19]  Norbert Lütkenhaus,et al.  Ultrafast and fault-tolerant quantum communication across long distances. , 2013, Physical review letters.

[20]  Laszlo Gyongyosi,et al.  Decentralized Base-Graph Routing for the Quantum Internet , 2018, Physical Review A.

[21]  Jonathan P. Dowling Schrödinger’s Web: Race to Build the Quantum Internet , 2020 .

[22]  Paul A Knott,et al.  Multiparameter Estimation in Networked Quantum Sensors. , 2017, Physical review letters.

[23]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[24]  K. Nemoto,et al.  System Design for a Long-Line Quantum Repeater , 2007, IEEE/ACM Transactions on Networking.

[25]  H. Bombin,et al.  Entanglement distillation protocols and number theory , 2005, quant-ph/0503013.

[26]  Zachary Eldredge,et al.  Optimal and secure measurement protocols for quantum sensor networks. , 2016, Physical review. A.

[27]  Moe Z. Win,et al.  Optimal Remote Entanglement Distribution , 2020, IEEE Journal on Selected Areas in Communications.

[28]  Hermann Kampermann,et al.  Quantum repeaters in space , 2020 .

[29]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[30]  Tie-Jun Wang,et al.  Implementation of quantum repeaters based on nitrogen-vacancy centers via coupling to microtoroid resonators , 2014 .

[31]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[32]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[33]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[34]  Michael Epping,et al.  Hamiltonians for one-way quantum repeaters , 2017, Quantum.

[35]  Barry C. Sanders,et al.  An efficient algorithm for optimizing adaptive quantum metrology processes , 2011, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[36]  W. Dur,et al.  Entanglement properties of multipartite entangled states under the influence of decoherence , 2005 .

[37]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[38]  V. V. Kuzmin,et al.  Scalable repeater architectures for multi-party states , 2019, npj Quantum Information.

[39]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[40]  Barry C. Sanders,et al.  Robustness of learning-assisted adaptive quantum-enhanced metrology in the presence of noise , 2017, IEEE International Conference on Systems, Man and Cybernetics.

[41]  Simon C Benjamin,et al.  Measurement-based entanglement under conditions of extreme photon loss. , 2007, Physical review letters.

[42]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[43]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[44]  S. Perseguers,et al.  Entanglement Distribution in Quantum Networks , 2010 .

[45]  Jens Eisert,et al.  Reinforcement learning decoders for fault-tolerant quantum computation , 2018, Mach. Learn. Sci. Technol..

[46]  Martin Zachariasen,et al.  Steiner Trees in Graphs and Hypergraphs , 2015 .

[47]  W Dür,et al.  Long-Range Big Quantum-Data Transmission. , 2017, Physical review letters.

[48]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[49]  N. Lutkenhaus,et al.  Quantum repeaters with imperfect memories: Cost and scalability , 2008, 0810.5334.

[50]  Koji Azuma,et al.  Fundamental limitation on quantum broadcast networks , 2016, 1609.03994.

[51]  C. Simon,et al.  Quantum repeaters with individual rare-earth ions at telecommunication wavelengths , 2017, Quantum.

[52]  David Elkouss,et al.  Entanglement Distribution in a Quantum Network: A Multicommodity Flow-Based Approach , 2020, IEEE Transactions on Quantum Engineering.

[53]  Stefan Bäuml,et al.  Universal limitations on quantum key distribution over a network , 2019, ArXiv.

[54]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[55]  Michael Epping,et al.  Large-scale quantum networks based on graphs , 2015, 1504.06599.

[56]  Koji Azuma,et al.  Versatile relative entropy bounds for quantum networks , 2017, 1707.05543.

[57]  Simon J. Devitt,et al.  Photonic Quantum Networks formed from NV− centers , 2014, Scientific Reports.

[58]  M. Koashi,et al.  Concentration and purification scheme for two partially entangled photon pairs , 2001, quant-ph/0101042.

[59]  B. Moor,et al.  Local permutations of products of Bell states and entanglement distillation , 2002, quant-ph/0207154.

[60]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[61]  W. Dur,et al.  Two-dimensional quantum repeaters , 2016, 1604.05352.

[62]  Le Phuc Thinh,et al.  Optimizing practical entanglement distillation , 2018, Physical Review A.

[63]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[64]  Stephanie Wehner,et al.  A Quantum Router Architecture for High-Fidelity Entanglement Flows in Multi-User Quantum Networks , 2020 .

[65]  Jian-Wei Pan,et al.  Practical scheme for entanglement concentration , 2001, quant-ph/0104039.

[66]  C. Simon,et al.  Towards long-distance quantum networks with superconducting processors and optical links , 2018, Quantum Science and Technology.

[67]  C. Simon,et al.  Rate-loss analysis of an efficient quantum repeater architecture , 2014, 1404.7183.

[68]  C. Simon,et al.  Entanglement over global distances via quantum repeaters with satellite links , 2014, 1410.5384.

[69]  Peter van Loock,et al.  Rate analysis for a hybrid quantum repeater , 2010, 1010.0106.

[70]  Hans-J. Briegel,et al.  Quantum-enhanced machine learning , 2016, Physical review letters.

[71]  Samuel L. Braunstein,et al.  Criteria for continuous-variable quantum teleportation , 1999, quant-ph/9910030.

[72]  Stefano Pirandola Bounds for multi-end communication over quantum networks , 2019 .

[73]  Christoph Simon,et al.  Practical quantum repeaters with parametric down-conversion sources , 2015, 1505.03470.

[74]  S. C. Benjamin,et al.  Optical generation of matter qubit graph states , 2005, quant-ph/0506110.

[75]  Paola Cappellaro,et al.  Effective routing design for remote entanglement generation on quantum networks , 2020, npj Quantum Information.

[76]  Mohsen Razavi,et al.  Physical and architectural considerations in quantum repeaters , 2009, OPTO.

[77]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[78]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[79]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[80]  Joseph D. Touch,et al.  Designing quantum repeater networks , 2013, IEEE Communications Magazine.

[81]  Jonathan P. Dowling,et al.  Remote quantum clock synchronization without synchronized clocks , 2017, npj Quantum Information.

[82]  M. Zwerger,et al.  Measurement-based quantum communication , 2015, 1506.00985.

[83]  John Calsamiglia,et al.  Growth of graph states in quantum networks , 2012, 1208.0710.

[84]  Jeffrey H. Shapiro,et al.  Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[85]  Optimising repeater schemes for the quantum internet , 2020 .

[86]  Anthony J. Brady,et al.  Spooky Action at a Global Distance $-$ Resource-Rate Analysis of a Space-Based Entanglement-Distribution Network for the Quantum Internet , 2019, 1912.06678.

[87]  A. Pirker,et al.  Multipartite state generation in quantum networks with optimal scaling , 2018, Scientific Reports.

[88]  F. Schmidt,et al.  Waiting time in quantum repeaters with probabilistic entanglement swapping , 2017, Physical Review A.

[89]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[90]  Annalisa Riccardi,et al.  Scheduling of space to ground quantum key distribution , 2020 .

[91]  Farrokh Vatan,et al.  All linear optical quantum memory based on quantum error correction. , 2003, Physical review letters.

[92]  C. Simon,et al.  Quantum Repeaters based on Single Trapped Ions , 2009, 0902.3127.

[93]  Quntao Zhuang,et al.  Repeater-enhanced distributed quantum sensing based on continuous-variable multipartite entanglement , 2018, Physical Review A.

[94]  A. Fowler,et al.  Surface code quantum communication. , 2009, Physical review letters.

[95]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[96]  Laszlo Gyongyosi,et al.  Entanglement access control for the quantum Internet , 2019, Quantum Information Processing.

[97]  Peter C. Humphreys,et al.  Multiplexed entanglement generation over quantum networks using multi-qubit nodes , 2017, 1702.04885.

[98]  Markus P. Mueller,et al.  Efficient quantum repeater based on deterministic Rydberg gates , 2010, 1003.1911.

[99]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[100]  Liang Jiang,et al.  Optimal approach to quantum communication using dynamic programming , 2007, Proceedings of the National Academy of Sciences.

[101]  G. Guo,et al.  Semihierarchical quantum repeaters based on moderate lifetime quantum memories , 2017, 1701.05718.

[102]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[103]  Barry C. Sanders,et al.  Controlling adaptive quantum-phase estimation with scalable reinforcement learning , 2016, ESANN.

[104]  Siddhartha Santra,et al.  Quantum repeater architecture with hierarchically optimized memory buffer times , 2018, Quantum Science and Technology.

[105]  P. Kok,et al.  Postselected versus nonpostselected quantum teleportation using parametric down-conversion , 1999, quant-ph/9903074.

[106]  Nicolai Friis,et al.  Optimizing Quantum Error Correction Codes with Reinforcement Learning , 2018, Quantum.

[107]  Xin Wang,et al.  When does reinforcement learning stand out in quantum control? A comparative study on state preparation , 2019, npj Quantum Information.

[108]  Hoi-Kwong Lo,et al.  Fundamental rate-loss trade-off for the quantum internet , 2016, Nature Communications.

[109]  J. Cirac,et al.  Classification of multiqubit mixed states: Separability and distillability properties , 1999, quant-ph/9911044.

[110]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[111]  Iordanis Kerenidis,et al.  Shortcuts to quantum network routing , 2015, ArXiv.

[112]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[113]  David Elkouss,et al.  Efficient Computation of the Waiting Time and Fidelity in Quantum Repeater Chains , 2019, IEEE Journal on Selected Areas in Communications.

[114]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[115]  Sumeet Khatri,et al.  Robust quantum network architectures and topologies for entanglement distribution , 2017, 1709.07404.

[116]  Joseph Fitzsimons,et al.  Probabilistic growth of large entangled states with low error accumulation. , 2009, Physical review letters.

[117]  W. Dur,et al.  Role of memory errors in quantum repeaters , 2007 .

[118]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[119]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[120]  David Elkouss,et al.  Efficient Optimization of Cut-offs in Quantum Repeater Chains , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[121]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[122]  P. Kok,et al.  Practical repeaters for ultralong-distance quantum communication , 2016, 1607.08140.

[123]  W. Dur,et al.  Measurement-based quantum repeaters , 2012, 1204.2178.

[124]  Liang Jiang,et al.  Optimized Entanglement Purification , 2017, Quantum.

[125]  Akimasa Miyake,et al.  Distillation of multipartite entanglement by complementary stabilizer measurements. , 2005, Physical review letters.

[126]  M. Shahriar,et al.  Long distance, unconditional teleportation of atomic states via complete Bell state measurements. , 2000, Physical review letters.

[127]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[128]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2019 .

[129]  Jun S. Liu,et al.  STATISTICAL APPLICATIONS OF THE POISSON-BINOMIAL AND CONDITIONAL BERNOULLI DISTRIBUTIONS , 1997 .

[130]  Hans-J. Briegel,et al.  Machine learning for long-distance quantum communication , 2019, PRX Quantum.

[131]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[132]  Alexander Hentschel,et al.  Machine learning for precise quantum measurement. , 2009, Physical review letters.

[133]  J. Eisert,et al.  Quantum network routing and local complementation , 2018, npj Quantum Information.

[134]  Jennifer L. Barry,et al.  Quantum partially observable Markov decision processes , 2014 .

[135]  Sophia E. Economou,et al.  Resource requirements for efficient quantum communication using all-photonic graph states generated from a few matter qubits , 2020 .

[136]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[137]  Wolfgang Dür,et al.  A quantum network stack and protocols for reliable entanglement-based networks , 2018, New Journal of Physics.

[138]  Axel Dahlberg,et al.  Distributed Routing in a Quantum Internet , 2019, ArXiv.

[139]  Reposition time in probabilistic imperfect memories , 2013, 1309.3407.

[140]  Alexei Gilchrist,et al.  Loss-tolerant optical qubits. , 2005, Physical review letters.

[141]  L. Casperson,et al.  Principles of lasers , 1983, IEEE Journal of Quantum Electronics.

[142]  Jayant Pande,et al.  Asymptotic expansions of the hypergeometric function with two large parameters—application to the partition function of a lattice gas in a field of traps , 2016, 1602.05146.

[143]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[144]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[145]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[146]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[147]  Ryo Namiki,et al.  Role of syndrome information on a one-way quantum repeater using teleportation-based error correction , 2016, 1605.00527.

[148]  Leandros Tassiulas,et al.  Routing entanglement in the quantum internet , 2017, npj Quantum Information.

[149]  Y. Li At a long distance , 2020 .

[150]  B. He,et al.  Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles , 2010, 1003.2353.

[151]  Mingsheng Ying,et al.  Reachability Analysis of Quantum Markov Decision Processes , 2014, Inf. Comput..

[152]  Luca Mazzarella,et al.  Space-borne quantum memories for global quantum communication , 2020 .

[153]  Damian Markham,et al.  Distributing graph states over arbitrary quantum networks , 2018, Physical Review A.

[154]  Gus Gutoski,et al.  Toward a general theory of quantum games , 2006, STOC '07.

[155]  Jonathan P. Dowling,et al.  Lorentz-invariant look at quantum clock-synchronization protocols based on distributed entanglement , 2000, quant-ph/0010097.

[156]  Barry C. Sanders,et al.  Single-shot adaptive measurement for quantum-enhanced metrology , 2016, Optical Engineering + Applications.

[157]  Sandor Imre,et al.  Opportunistic Entanglement Distribution for the Quantum Internet , 2019, Scientific Reports.

[158]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[159]  S. Wehner,et al.  Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission , 2018, Physical Review A.

[160]  K. Knopp Theory and Application of Infinite Series , 1990 .

[161]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[162]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[163]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[164]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[165]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[166]  W Dür,et al.  Multiparticle entanglement purification for graph states. , 2003, Physical review letters.

[167]  Koji Azuma,et al.  Aggregating quantum repeaters for the quantum internet , 2016, 1606.00135.

[168]  Thomas Vidick,et al.  Quantum Proofs , 2016, Found. Trends Theor. Comput. Sci..

[169]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.