Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems
暂无分享,去创建一个
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] T. Laursen,et al. Contact—impact modeling in explicit transient dynamics , 2000 .
[3] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[4] Franz Chouly,et al. A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..
[5] Alexandre Ern,et al. Analysis of the Modified Mass Method for the Dynamic Signorini Problem with Coulomb Friction , 2011, SIAM J. Numer. Anal..
[6] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[7] Gary Cohen,et al. Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations , 2016 .
[8] Erik Burman,et al. A Nitsche-based formulation for fluid-structure interactions with contact , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.
[9] M. Schatzman,et al. Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: La corde vibrante avec obstacle ponctuel , 1980 .
[10] Jérôme Pousin,et al. An overview of recent results on Nitsche's method for contact problems , 2016 .
[11] Laetitia Paoli,et al. Numerical simulation of the dynamics of an impacting bar , 2007 .
[12] G. Burton. Sobolev Spaces , 2013 .
[13] Patrick Laborde,et al. Mass redistribution method for finite element contact problems in elastodynamics , 2008 .
[14] Barbara Wohlmuth,et al. A stable energy‐conserving approach for frictional contact problems based on quadrature formulas , 2008 .
[15] L. Paoli,et al. Approximation et existence en vibro-impact , 1999 .
[16] Laetitia Paoli,et al. A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..
[17] M. Schatzman. A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle , 1980 .
[18] Jérôme Pousin,et al. A weighted finite element mass redistribution method for dynamic contact problems , 2019, J. Comput. Appl. Math..
[19] P. Alart,et al. A generalized Newton method for contact problems with friction , 1988 .
[20] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[21] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[22] J. Pousin,et al. A robust finite element redistribution approach for elastodynamic contact problems , 2016 .
[23] J. J.,et al. Numerical aspects of the sweeping process , 1999 .
[24] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .
[25] David E. Stewart,et al. Existence of Solutions for a Class of Impact Problems Without Viscosity , 2006, SIAM J. Math. Anal..
[26] Nathan M. Newmark,et al. A Method of Computation for Structural Dynamics , 1959 .
[27] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[28] C. Mariotti,et al. An explicit energy-momentum conserving time-integration scheme for Hamiltonian dynamics , 2017 .
[29] F. Armero,et al. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .
[30] Mark O. Neal,et al. Contact‐impact by the pinball algorithm with penalty and Lagrangian methods , 1991 .
[31] Franz Chouly,et al. An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .
[32] Yves Renard,et al. The singular dynamic method for constrained second order hyperbolic equations: Application to dynamic contact problems , 2010, J. Comput. Appl. Math..
[33] Adrian J. Lew,et al. An explicit asynchronous contact algorithm for elastic body–rigid wall interaction , 2012 .
[34] Matthew West,et al. Decomposition contact response (DCR) for explicit finite element dynamics , 2005, International Journal for Numerical Methods in Engineering.
[35] Laetitia Paoli,et al. A Numerical Scheme for Impact Problems II: The Multidimensional Case , 2002, SIAM J. Numer. Anal..
[36] M. Raous,et al. Friction and instability of steady sliding: squeal of a rubber/glass contact , 1999 .
[37] Franz Chouly,et al. On convergence of the penalty method for unilateral contact problems , 2012, 1204.4136.
[38] T. Laursen,et al. DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .
[39] Alexandre Ern,et al. Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..
[40] Michel Salaün,et al. Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations , 2013 .
[41] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[42] D. Flanagan,et al. PRONTO 3D: A three-dimensional transient solid dynamics program , 1989 .
[43] Arne S. Gullerud,et al. Solution verification for explicit transient dynamics problems in the presence of hourglass and contact forces. , 2004 .
[44] Franz Chouly,et al. A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .
[45] Alexandre Ern,et al. Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem , 2009 .
[46] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[47] Franz Chouly,et al. Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..
[48] Michelle Schatzman,et al. A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .
[49] P. Tallec,et al. Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .
[50] Laetitia Paoli,et al. Vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie , 1993 .
[51] J. U. Kim,et al. A boundary thin obstacle problem for a wave equation , 1989 .
[52] Vincent Acary,et al. Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: Definition and outlook , 2014, Math. Comput. Simul..
[53] Jérôme Pousin,et al. Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary , 2014 .
[54] Sebastian Wolff,et al. Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints , 2013, International journal for numerical methods in engineering.
[55] J. Moreau,et al. Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .
[56] Franz Chouly,et al. A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .
[57] A. Ern,et al. Quasi-explicit time-integration schemes for dynamic fracture with set-valued cohesive zone models , 2013 .