Numerical analysis of combined radiation and unsteady natural convection within a horizontal annular space

The effect of radiation on unsteady natural convection in a two‐dimensional participating medium between two horizontal concentric and vertically eccentric cylinders is investigated numerically. The equations of transfer are written by using a bicylindrical coordinates system, the stream function, and the vorticity. The finite volume radiation solution method and the control volume approach are used to discretize the coupled equations of radiative transfer, momentum, and energy. Original results are obtained for three eccentricities, Rayleigh number equal to 104, 105, and a wide range of radiation‐conduction parameter. The effects of optical thickness, wall emissivity, and scattering on flow intensity and heat transfer are discussed.

[1]  Parametric analysis of radiative-convective heat transfer around a circular cylinder in a cross flow using the finite volume radiation solution method , 1996 .

[2]  G. Lauriat,et al.  Influences of the boundary conditions and linearization on the stability of a radiating fluid in a vertical layer , 1985 .

[3]  S. Baek,et al.  Analysis of radiative transfer in cylindrical enclosures using the finite volume method , 1997 .

[4]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[5]  G. D. Raithby,et al.  A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media , 1990 .

[6]  Ranganathan Kumar Study of natural convection in horizontal annuli , 1988 .

[7]  G. Raithby,et al.  Prediction of radiative transfer in cylindrical enclosures with the finite volume method , 1992 .

[8]  R. Viskanta,et al.  Transient combined laminar free convection and radiation in a rectangular enclosure , 1976, Journal of Fluid Mechanics.

[9]  S. Patankar,et al.  Finite volume method for radiation heat transfer , 1994 .

[10]  Sumanta Acharya,et al.  NATURAL CONVECTION AND RADIATION IN A SQUARE ENCLOSURE , 1989 .

[11]  J. Caltagirone,et al.  Numerical Solution of a Flow due to Natural Convection in Horizontal Cylindrical Annulus , 1979 .

[12]  Richard J Goldstein,et al.  An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders , 1976, Journal of Fluid Mechanics.

[13]  Parry Moon,et al.  Field Theory Handbook , 1961 .

[14]  A. Bejan Convection Heat Transfer , 1984 .

[15]  Suhas V. Patankar,et al.  Finite volume radiative heat transfer procedure for irregular geometries , 1994 .

[16]  A. Bejan,et al.  The nondarcy regime for vertical boundary layer natural convection in a porous medium , 1984 .

[17]  B. Farouk,et al.  Laminar and Turbulent Natural Convection-Radiation Interactions in a Square Enclosure Filled with a Nongray Gas , 1989 .

[18]  J. Lloyd,et al.  Radiation-Natural Convection Interactions in Two-Dimensional Complex Enclosures , 1983 .

[19]  B. Tremblay,et al.  On transient natural convection heat transfer in the annulus between concentric, horizontal cylinders with isothermal surfaces , 1984 .

[20]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[21]  M. Hassab,et al.  Effects of radiation and convective boundary conditions on the stability of fluid in an inclined slender slot , 1979 .

[22]  Hans Beer,et al.  NUMERICAL ANALYSIS OF LAMINAR NATURAL CONVECTION BETWEEN CONCENTRIC AND ECCENTRIC CYLINDERS , 1981 .

[23]  Richard J Goldstein,et al.  An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli , 1978 .

[24]  C. T. Carley,et al.  A Numerical Solution for Natural Convection in Cylindrical Annuli , 1971 .

[25]  G. Merker,et al.  Advanced numerical computation of two-dimensional time-dependent free convection in cavities , 1980 .

[26]  S. Patankar,et al.  Nonaxisymmetric Radiative Transfer in Cylindrical Enclosures , 1996, Heat Transfer: Volume 1 — Heat Transfer in Microgravity Systems; Radiative Heat Transfer and Radiative Heat Transfer in Low-Temperature Environments; Thermal Contact Conductance and Inverse Problems in Heat Transfer.

[27]  J. Howell,et al.  Combined radiation and natural convection in a two-dimensional participating square medium , 1991 .

[28]  M. Daguenet,et al.  Étude numérique de l'influence du transfert radiatif sur la convection naturelle laminaire, bidimensionnelle, permanente, dans un espace annulaire d'axe horizontal, délimité par deux cylindres circulaires isothermes , 1998 .

[29]  Suhas V. Patankar,et al.  SOLUTION OF SOME TWO-DIMENSIONAL INCOMPRESSIBLE FLOW PROBLEMS USING A CURVILINEAR COORDINATE SYSTEM BASED CALCULATION PROCEDURE , 1988 .

[30]  S. Baek,et al.  Analysis of combined conductive and radiative heat transfer in a two-dimensional rectangular enclosure using the discrete ordinates method , 1991 .

[31]  S. O. Onyegegbu,et al.  Heat transfer inside a horizontal cylindrical annulus in the presence of thermal radiation and buoyancy , 1986 .