Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides.

2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3-3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.

[1]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[2]  V. Maisonneuve,et al.  Paraelectric-Ferroelectric Transition in the Lamellar Thiophosphate CuInP2S6. , 1995 .

[3]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[4]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[5]  Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3 , 2006 .

[6]  J. D. Lee,et al.  Strain-Induced Magnetism in Single-Layer MoS2: Origin and Manipulation , 2015 .

[7]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[8]  Y. Mathey,et al.  Vibrational study of the [P2S4−6] anion, of some MPS3 layered compounds (), and of their intercalates with [Co(η5-C5H5)+2] cations , 1983 .

[9]  R. Brec Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3 , 1986 .

[10]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[11]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[12]  R. Brec Review on Structural and Chemical Properties of Transition Metal Phosphorus Trisulfides MPS3 , 1988 .

[13]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[14]  T. Murzina,et al.  Second harmonic generation in the lamellar ferrielectric CuInP2S6 , 2000 .

[15]  P. Wild,et al.  Crystal growth of metal-phosphorus-sulfur compounds by vapor transport , 1970 .

[16]  Zhongfan Liu,et al.  Interlayer vibrational modes in few-quintuple-layer Bi 2 Te 3 and Bi 2 Se 3 two-dimensional crystals: Raman spectroscopy and first-principles studies , 2014 .

[17]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[18]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[19]  B. Roessli,et al.  Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3 , 2006 .

[20]  P. Ajayan,et al.  Synthesis and photoresponse of large GaSe atomic layers. , 2013, Nano letters.

[21]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[22]  P. Fischer,et al.  Magnetic Microscopy of Layered Structures , 2014 .

[23]  R. Kniep,et al.  Quaternary selenodiphosphates(IV) : MIMIII[P2Se6], (MI=Cu, Ag; MIII=Cr, Al, Ga, In) , 1992 .

[24]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[25]  Benedek,et al.  Raman scattering in antiferromagnetic FePS3 and FePSe3 crystals. , 1987, Physical review. B, Condensed matter.

[26]  Xiaojun Wu,et al.  Half-metallicity in MnPSe₃ exfoliated nanosheet with carrier doping. , 2014, Journal of the American Chemical Society.

[27]  M. Balkanski Spin-Dependent Light Scattering in Two-Dimensional Magnetically Ordered Systems , 1992 .

[28]  Kai Xiao,et al.  Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. , 2013, Nano letters.

[29]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[30]  Elizabeth Gibney,et al.  The super materials that could trump graphene , 2015, Nature.

[31]  H. Zeng,et al.  Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. , 2015, Angewandte Chemie.

[32]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[33]  Li‐Min Liu,et al.  Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting. , 2014, The Journal of chemical physics.

[34]  Robert H. Swendsen,et al.  Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers , 2015, 1503.00412.

[35]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[36]  Stefan Seidlmayer,et al.  Synthesis and structure determination of AgScP2Se6, AgErP2Se6 and AgTmP2Se6 , 2009 .

[37]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[38]  T. J. Hicks,et al.  Single-crystal and powder neutron diffraction experiments on Fe P S 3 : Search for the magnetic structure , 2007 .

[39]  S. Pantelides,et al.  Rapid and Nondestructive Identification of Polytypism and Stacking Sequences in Few‐Layer Molybdenum Diselenide by Raman Spectroscopy , 2015, Advanced materials.

[40]  R. Frindt,et al.  Exfoliated single molecular layers of Mn_0.8PS_3 and Cd_0.8PS_3 , 2005 .

[41]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[42]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[43]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[44]  V. Maisonneuve,et al.  Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6 , 1994 .

[45]  B. Liu,et al.  GaS and GaSe Ultrathin Layer Transistors , 2012, Advanced materials.

[46]  Haixin Chang,et al.  Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. , 2014, ACS nano.

[47]  Olle Eriksson,et al.  Two-Dimensional Materials from Data Filtering and Ab Initio Calculations , 2013 .

[48]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[49]  Eugenie Samuel Reich,et al.  Phosphorene excites materials scientists , 2014, Nature.

[50]  Joy,et al.  Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). , 1992, Physical review. B, Condensed matter.

[51]  Xiang Zhang,et al.  Edge Nonlinear Optics on a MoS2 Atomic Monolayer , 2014, Science.