Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators

[1]  Jichun Liu,et al.  On the α → β Transition of Carbon-Coated Highly Oriented PVDF Ultrathin Film Induced by Melt Recrystallization , 2003 .

[2]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[3]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[4]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[5]  Junting Xu,et al.  Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride). , 2010, ACS applied materials & interfaces.

[6]  王军波,et al.  Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency , 2010 .

[7]  S. Lanceros‐Méndez,et al.  Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites , 2012, Journal of Materials Science.

[8]  Yiu-Wing Mai,et al.  Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. , 2011, Nanoscale.

[9]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[10]  Darryl S. Williams,et al.  The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). , 2012, The journal of physical chemistry. B.

[11]  J. Zha,et al.  Size-dependent low-frequency dielectric properties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films , 2012 .

[12]  Guangzu Zhang,et al.  Crystallization behavior and phase‐transformation mechanism with the use of graphite nanosheets in poly(vinylidene fluoride) nanocomposites , 2012 .

[13]  L. Zhen,et al.  Crystallization kinetics and phase transformation of poly(vinylidene fluoride) films incorporated with functionalized baTiO3 nanoparticles , 2013 .

[14]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[15]  Hyoung Jin Choi,et al.  Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride) , 2013 .

[16]  T. Ren,et al.  A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube. , 2013, Nanoscale.

[17]  Geon-Tae Hwang,et al.  Large‐Area and Flexible Lead‐Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler , 2014 .

[18]  Zhibin Zhang,et al.  Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film , 2014 .

[19]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[20]  Vijay Narayan,et al.  A Scalable Nanogenerator Based on Self‐Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency , 2014, 1505.03694.

[21]  Shin Hur,et al.  Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells , 2014 .

[22]  H. Sodano,et al.  Relationship between BaTiO₃ nanowire aspect ratio and the dielectric permittivity of nanocomposites. , 2014, ACS applied materials & interfaces.

[23]  Jinhan Cho,et al.  Layer‐by‐Layer Controlled Perovskite Nanocomposite Thin Films for Piezoelectric Nanogenerators , 2014 .

[24]  Yihe Zhang,et al.  An All‐Solid‐State Flexible Piezoelectric High‐k Film Functioning as Both a Generator and In Situ Storage Unit , 2015 .

[25]  Han Byul Kang,et al.  (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators , 2015 .

[26]  Zheng Zhang,et al.  High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF , 2015 .

[27]  Sumanta Kumar Karan,et al.  Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. , 2015, Nanoscale.

[28]  Hyuk-Sang Kwon,et al.  Self-powered deep brain stimulation via a flexible PIMNT energy harvester , 2015 .

[29]  Manoj Kumar Gupta,et al.  Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics , 2015 .

[30]  Chang Kyu Jeong,et al.  Performance Enhancement of Electronic and Energy Devices via Block Copolymer Self‐Assembly , 2015, Advanced materials.

[31]  Xiluan Wang,et al.  Flexible graphene devices related to energy conversion and storage , 2015 .

[32]  Y. Fuh,et al.  A Transparent and Flexible Graphene-Piezoelectric Fiber Generator. , 2016, Small.

[33]  Dipankar Mandal,et al.  Yb3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: A facile strategy of highly efficient mechanical energy harvester fabrication , 2016 .

[34]  Zhong Lin Wang,et al.  A One‐Structure‐Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric–Piezoelectric–Pyroelectric Effects , 2016, Advanced materials.

[35]  Sandip Maiti,et al.  An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Self‐Poled PVDF/AlO‐rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency , 2016 .

[36]  T. Trung,et al.  A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system , 2016 .

[37]  Byoung-Sun Lee,et al.  Silicon/Carbon Nanotube/BaTiO₃ Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential. , 2016, ACS nano.

[38]  D. Mandal,et al.  Design of In Situ Poled Ce(3+)-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. , 2016, ACS applied materials & interfaces.

[39]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[40]  Chang Kyu Jeong,et al.  A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle-polymer composite. , 2016, Nanoscale.

[41]  Chunhua Yao,et al.  Mesoporous Piezoelectric Polymer Composite Films with Tunable Mechanical Modulus for Harvesting Energy from Liquid Pressure Fluctuation , 2016, Advanced functional materials.

[42]  Pooi See Lee,et al.  Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. , 2016, ACS applied materials & interfaces.

[43]  Han-Ping D. Shieh,et al.  Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement , 2016 .

[44]  Guocheng Liu,et al.  Optimal geometrical design of inertial vibration DC piezoelectric nanogenerators based on obliquely aligned InN nanowire arrays. , 2017, Nanoscale.

[45]  Fengchao Wang,et al.  Graphene‐Piezoelectric Material Heterostructure for Harvesting Energy from Water Flow , 2017 .

[46]  Jun-Bo Yoon,et al.  Versatile Transfer of an Ultralong and Seamless Nanowire Array Crystallized at High Temperature for Use in High-Performance Flexible Devices. , 2017, ACS nano.

[47]  Swagata Roy,et al.  Er3+/Fe3+ Stimulated Electroactive, Visible Light Emitting, and High Dielectric Flexible PVDF Film Based Piezoelectric Nanogenerators: A Simple and Superior Self-Powered Energy Harvester with Remarkable Power Density. , 2017, ACS applied materials & interfaces.

[48]  Kewei Zhang,et al.  A One‐Structure‐Based Piezo‐Tribo‐Pyro‐Photoelectric Effects Coupled Nanogenerator for Simultaneously Scavenging Mechanical, Thermal, and Solar Energies , 2017 .

[49]  Yu Song,et al.  Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring , 2017 .

[50]  H. Duan,et al.  Synthesis of Orthorhombic Perovskite-Type ZnSnO3 Single-Crystal Nanoplates and Their Application in Energy Harvesting. , 2017, ACS applied materials & interfaces.

[51]  Tae Yun Kim,et al.  Boosting Power‐Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties , 2017 .

[52]  Chung-Lin Wu,et al.  Efficient Coupling of Lateral Force in GaN Nanorod Piezoelectric Nanogenerators by Vertically Integrated Pyramided Si Substrate , 2017 .

[53]  Liwei Lin,et al.  Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self-Orientation of Nanocrystals. , 2017, ACS nano.

[54]  Usman Khan,et al.  High‐Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF‐TrFE) with Controlled Crystallinity and Dipole Alignment , 2017 .

[55]  Zhong Lin Wang,et al.  Triboelectric Nanogenerator Powered Electrochemical Degradation of Organic Pollutant Using Pt-Free Carbon Materials. , 2017, ACS nano.

[56]  Xiaogan Li,et al.  Piezo‐Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis–NIR Broadband Photodiode , 2017, Advanced materials.

[57]  Maksim Skorobogatiy,et al.  Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. , 2017, ACS nano.

[58]  Daniel Therriault,et al.  One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures. , 2017, ACS applied materials & interfaces.

[59]  Yongming Hu,et al.  Self-Powered Viscosity and Pressure Sensing in Microfluidic Systems Based on the Piezoelectric Energy Harvesting of Flowing Droplets. , 2017, ACS applied materials & interfaces.

[60]  N. Khare,et al.  Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator , 2018, Nano Energy.

[61]  Nae-Eung Lee,et al.  An Omnidirectionally Stretchable Piezoelectric Nanogenerator Based on Hybrid Nanofibers and Carbon Electrodes for Multimodal Straining and Human Kinematics Energy Harvesting , 2019, Advanced Energy Materials.

[62]  Kyeong Nam Kim,et al.  Transparent-flexible-multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications , 2018, Nano Energy.