A New Approach to Stable Matching Problems

It is shown that Stable Matching problems are the same as problems about stable configurations of X-networks. Consequences include easy proofs of old theorems, a new simple algorithm for finding a stable matching, an understanding of the difference between Stable Marriage and Stable Roommates, NP-completeness of Three-party Stable Marriage, CC-completeness of several Stable Matching problems, and a fast parallel reduction from the Stable Marriage problem to the Assignment problem.

[1]  Tomás Feder,et al.  A New Fixed Point Approach for Stable Networks and Stable Marriages , 1992, J. Comput. Syst. Sci..

[2]  Ernst W. Mayr,et al.  The complexity of circuit value and network stability , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[3]  L. Shapley,et al.  College Admissions and the Stability of Marriage , 1962 .

[4]  Robert W. Irving,et al.  The Complexity of Counting Stable Marriages , 1986, SIAM J. Comput..

[5]  David Gale,et al.  Some remarks on the stable matching problem , 1985, Discret. Appl. Math..

[6]  Ernst W. Mayr,et al.  The computational complexity of the circuit value and network stability problems , 1990 .

[7]  Robert E. Tarjan,et al.  Notes on Introductory Combinatorics , 1983, Progress in Computer Science.

[8]  Ernst W. Mayr,et al.  The Complexity of Circuit Value and Network Stability , 1992, J. Comput. Syst. Sci..

[9]  Robert W. Irving,et al.  An efficient algorithm for the 8.8`Optimal stable marriage , 1987 .

[10]  Robert W. Irving An Efficient Algorithm for the "Stable Roommates" Problem , 1985, J. Algorithms.

[11]  Daniel S. Hirschberg,et al.  Complexity of the stable marriage and stable roommate problems in three dimensions , 1988 .

[12]  Tomás Feder A new fixed point approach for stable networks stable marriages , 1989, STOC '89.

[13]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[14]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..

[15]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[16]  Donald E. Knuth Mariages stables et leurs relations avec d'autres problèmes combinatoires : introduction à l'analyse mathématique des algorithmes , 1976 .

[17]  W IrvingRobert,et al.  An efficient algorithm for the optimal stable marriage , 1987 .

[18]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[19]  Harry R. Lewis,et al.  Review of "Mariages stables et leur relations avec d'autre problèmes combinatoires: introduction à l'analyze mathématique des algorithmes" by Donald E. Knuth. Les Presses de l'Université de Montréal. , 1978, SIGA.

[20]  Dan Gusfield,et al.  The Structure of the Stable Roommate Problem: Efficient Representation and Enumeration of All Stable Assignments , 1988, SIAM J. Comput..

[21]  David Maier,et al.  Review of "Introduction to automata theory, languages and computation" by John E. Hopcroft and Jeffrey D. Ullman. Addison-Wesley 1979. , 1980, SIGA.

[22]  Larry J. Stockmeyer,et al.  Classifying the computational complexity of problems , 1987, The Journal of Symbolic Logic.

[23]  Richard M. Karp,et al.  A Survey of Parallel Algorithms for Shared-Memory Machines , 1988 .

[24]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[25]  Stephen A. Cook,et al.  A Simple Parallel Algorithm for Finding a Satisfying Truth Assignment to a 2-CNF Formula , 1988, Inf. Process. Lett..