Bosbach states on fuzzy structures

Pseudo-BL algebras are non-commutative fuzzy structures which generalize BL-algebras and pseudo-MV algebras. In this paper we study the states on a pseudo-BL algebra. This concept is obtained by using the Bosbach condition for each of the two implications of a pseudo BL-algebra. We also propose a notion of conditional state for BL-algebras.

[1]  Ján Jakubík,et al.  On complete $MV$-algebras , 1995 .

[2]  B. Riecan,et al.  Integral, Measure, and Ordering , 1997 .

[3]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[4]  George Georgescu,et al.  Some classes of pseudo-BL algebras , 2002, Journal of the Australian Mathematical Society.

[5]  E. Turunen Mathematics Behind Fuzzy Logic , 1999 .

[6]  Anatolij Dvurecenskij,et al.  States on Pseudo MV-Algebras , 2001, Stud Logica.

[7]  D. Maharam An Algebraic Characterization of Measure Algebras , 1947 .

[8]  A. Nola,et al.  Boolean products of BL-algebras , 2000 .

[9]  George Georgescu,et al.  Convergence in MV-algebras , 1997 .

[10]  George Georgescu,et al.  Conditional States in Finite-Valued Logics , 1999 .

[11]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[12]  A. Dvurečenskij,et al.  On pseudo MV-algebras , 2001, Soft Comput..

[13]  George Georgescu,et al.  Lukasiewicz-Moisil algebras , 2012, Annals of discrete mathematics.

[14]  A. Dvurecenskij Pseudo MV-algebras are intervals in ℓ-groups , 2002, Journal of the Australian Mathematical Society.

[15]  Beloslav Riečan,et al.  Probability on MV algebras , 1997 .

[16]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[17]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .