Impact of atomization and spray flow conditions on droplet μ-explosions and temporal self-similarity in the FSP process

[1]  H. Hasse,et al.  Thermophysical Properties of Mixtures of 2-Ethylhexanoic Acid and Ethanol , 2023, Journal of Chemical & Engineering Data.

[2]  S. Kaiser,et al.  Visualization and image analysis of droplet puffing and micro-explosion in spray-flame synthesis of iron oxide nanoparticles , 2022, Experiments in Fluids.

[3]  Salah E. Mohammed,et al.  Macroscopic and microscopic spray structure of water-in-diesel emulsions , 2021 .

[4]  R. Kneer,et al.  Influence of angled dispersion gas on coaxial atomization, spray and flame formation in the context of spray-flame synthesis of nanoparticles , 2021, Experiments in Fluids.

[5]  U. Fritsching,et al.  Synthesis of Metal Oxide Nanoparticles in Flame Sprays: Review on Process Technology, Modeling, and Diagnostics , 2021 .

[6]  Hu Li,et al.  A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines , 2020 .

[7]  S. Pokhrel,et al.  Flame-made Particles for Sensors, Catalysis, and Energy Storage Applications , 2020, Energy & fuels : an American Chemical Society journal.

[8]  P. Massoli,et al.  Investigation on the conditions leading to the micro-explosion of emulsified fuel droplet using two colors LIF method , 2020, Experimental Thermal and Fluid Science.

[9]  L. Mädler,et al.  Phase-selective laser–induced breakdown spectroscopy in flame spray pyrolysis for iron oxide nanoparticle synthesis , 2020 .

[10]  Fabio J. W. A. Martins,et al.  Experimental investigation of axisymmetric, turbulent, annular jets discharged through the nozzle of the SPP1980 SpraySyn burner under isothermal and reacting conditions , 2020, Experimental Thermal and Fluid Science.

[11]  T. Kasper,et al.  Decomposition Reactions of Fe(CO)5, Fe(C5H5)2, and TTIP as Precursors for the Spray-Flame Synthesis of Nanoparticles in Partial Spray Evaporation at Low Temperatures , 2020 .

[12]  S. Pokhrel,et al.  The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis , 2020, Combustion and flame.

[13]  L. Mädler,et al.  Nanoparticle evolution in flame spray pyrolysis—Process design via experimental and computational analysis , 2020 .

[14]  U. Fritsching,et al.  Chemistry of iron nitrate-based precursor solutions for spray-flame synthesis. , 2019, Physical chemistry chemical physics : PCCP.

[15]  A. Kempf,et al.  SpraySyn-A standardized burner configuration for nanoparticle synthesis in spray flames. , 2019, The Review of scientific instruments.

[16]  U. Fritsching,et al.  Ethanol droplet formation, dynamics and combustion mode in the flame of the SpraySyn-nozzle , 2019, Experiments in Fluids.

[17]  Firmansyah,et al.  Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging , 2018, Energies.

[18]  P. Massoli,et al.  Optical investigations in a CI engine fueled with water in diesel emulsion produced through microchannels , 2018, Experimental Thermal and Fluid Science.

[19]  S. Pokhrel,et al.  Screening Precursor-Solvent Combinations for Li4Ti5O12 Energy Storage Material Using Flame Spray Pyrolysis. , 2017, ACS applied materials & interfaces.

[20]  Alessandro Mazzetti,et al.  Paraffin-based hybrid rocket engines applications: A review and a market perspective , 2016 .

[21]  S. Basu,et al.  Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review , 2016 .

[22]  L. Mädler,et al.  The Role of Microexplosions in Flame Spray Synthesis for Homogeneous Nanopowders from Low-cost Metal Precursors , 2016 .

[23]  Tao Zhang,et al.  Effect of nozzle geometry and processing parameters on the formation of nanoparticles using FSP , 2014 .

[24]  L. Ganippa,et al.  Physics of puffing and microexplosion of emulsion fuel droplets , 2014 .

[25]  G. T. Kalghatgi,et al.  WITHDRAWN: Developments in internal combustion engines and implications for combustion science and future transport fuels , 2014 .

[26]  Ming Huo,et al.  Study on the spray and combustion characteristics of water–emulsified diesel , 2014 .

[27]  L. Mädler,et al.  Disruptive burning of precursor/solvent droplets in flame‐spray synthesis of nanoparticles , 2013 .

[28]  S. Dembélé,et al.  Process control for the synthesis of ZrO2 nanoparticles using FSP at high production rate , 2013 .

[29]  S. Pratsinis,et al.  Fluid-particle dynamics during combustion spray aerosol synthesis of ZrO2 , 2012 .

[30]  S. Pratsinis,et al.  Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates. , 2011, Physical chemistry chemical physics : PCCP.

[31]  L. Mädler,et al.  Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. , 2010, Nanoscale.

[32]  M. Eslamian,et al.  Characteristics of spray flames and the effect of group combustion on the morphology of flame-made nanoparticles , 2008, Nanotechnology.

[33]  L. Mädler,et al.  Direct measurement of entrainment during nanoparticle synthesis in spray flames , 2006 .

[34]  S. Pratsinis,et al.  Droplet and particle dynamics during flame spray synthesis of nanoparticles , 2005 .

[35]  W. Stark,et al.  Criteria for Flame‐Spray Synthesis of Hollow, Shell‐Like, or Inhomogeneous Oxides , 2005 .

[36]  Lutz Mädler,et al.  Nanoparticle synthesis at high production rates by flame spray pyrolysis , 2003 .

[37]  W. Stark,et al.  Simultaneous deposition of Au nanoparticles during flame synthesis of TiO_2 and SiO_2 , 2003 .

[38]  Lutz Mädler,et al.  Controlled synthesis of nanostructured particles by flame spray pyrolysis , 2002 .

[39]  Emmanuel Villermaux,et al.  Mixing and Spray Formation in Coaxial Jets , 1998 .

[40]  Emil J. Hopfinger,et al.  Break-up and atomization of a round water jet by a high-speed annular air jet , 1998, Journal of Fluid Mechanics.

[41]  W. V. Steele,et al.  Vapor pressure, heat capacity, and density along the saturation line, measurements for cyclohexanol, 2-cyclohexen-1-one, 1,2-dichloropropane, 1,4-di-tert-butylbenzene, ({+-})-2-ethylhexanoic acid, 2-(methylamino)ethanol, perfluoro-n-heptane, and sulfolane , 1997 .

[42]  A. Lefebvre,et al.  The interdependence of spray characteristics and evaporation history of fuel sprays , 1984 .

[43]  A. C. Fernandez-Pello,et al.  Initial Observations on the Free Droplet Combustion Characteristics of Water-In-Fuel Emulsions† , 1979 .

[44]  F. P. Ricou,et al.  Measurements of entrainment by axisymmetrical turbulent jets , 1961, Journal of Fluid Mechanics.

[45]  P. L. Noüy,et al.  AN INTERFACIAL TENSIOMETER FOR UNIVERSAL USE. , 1925 .

[46]  R. Koch,et al.  THEORETICAL STUDIES ON THE INFLUENCE OF REFRACTIVE INDEX GRADIENTS WITHIN MULTICOMPONENT DROPLETS ON SIZE MEASUREMENTS BY PHASE DOPPLER ANEMOMETRY , 2023, Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems.

[47]  L. Mädler,et al.  Microexplosions of multicomponent drops in spray flames , 2022, Combustion and Flame.

[48]  U. Fritsching,et al.  DROP DYNAMICS IN HETEROGENEOUS SPRAY FLAMES FOR NANOPARTICLE SYNTHESIS , 2020 .

[49]  C. Schulz,et al.  Gas-phase synthesis of functional nanomaterials: Challenges to kinetics, diagnostics, and process development , 2019 .

[50]  P. Massoli,et al.  INSIGHT OF AWATER-IN-OIL EMULSION DROP UNDER LEIDENFROST HEATING USING LASER-INDUCED FLUORESCENCE OPTICAL DIAGNOSTICS , 2019, Atomization and Sprays.

[51]  L. Mädler,et al.  Single droplet combustion of precursor/solvent solutions for nanoparticle production: Optical diagnostics on single isolated burning droplets with micro-explosions , 2019, Proceedings of the Combustion Institute.

[52]  C. Schulz,et al.  Spray‐flame synthesis of La(Fe, Co)O 3 nano‐perovskites from metal nitrates , 2019, AIChE Journal.

[53]  L. Mädler,et al.  Experimental investigation on microexplosion of single isolated burning droplets containing titanium tetraisopropoxide for nanoparticle production , 2017 .

[54]  K. Okazaki,et al.  Observation of droplet behavior of emulsified fuel in secondary atomization in flame , 2014 .

[55]  L. Mädler,et al.  INFLUENCE OF ATOMIZATION AND SPRAY PARAMETERS ON THE FLAME SPRAY PROCESS FOR NANOPARTICLE PRODUCTION , 2014 .

[56]  Ken Okazaki,et al.  Visualization of secondary atomization in emulsified-fuel spray flow by shadow imaging , 2013 .

[57]  Y. Mizutani,et al.  IN SITU OBSERVATION OF MICROEXPLOSION OF EMULSION DROPLETS IN SPRAY FLAMES , 2001 .

[58]  J. Lasheras,et al.  Liquid Jet Instability and Atomization in a Coaxial Gas Stream , 2000 .

[59]  R. Dibble,et al.  Laminar Nonpremixed Flames , 1999 .

[60]  Graham Wigley,et al.  Sensitivity of Dropsize Measurements by Phase Doppler Anemometry to Refractive Index Changes in Combusting Fuel Sprays , 1991 .

[61]  C. Law,et al.  Microexplosion of fuel droplets under high pressure , 1985 .

[62]  Verein Deutscher Ingenieure. VDI-Wärmeatlas : Berechnungsblätter für den Wärmeübergang , 1954 .