Fast homoepitaxial growth of 4H-SiC with low basal-plane dislocation density and low trap concentration by hot-wall chemical vapor deposition

[1]  T. Kimoto,et al.  Impacts of growth parameters on deep levels in n-type 4H-SiC , 2007 .

[2]  T. Kimoto,et al.  Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons , 2006 .

[3]  Giuseppe Pistone,et al.  Epitaxial Layers Grown with HCl Addition: A Comparison with the Standard Process , 2006 .

[4]  John W. Palmour,et al.  Techniques for Minimizing the Basal Plane Dislocation Density in SiC Epilayers to Reduce Vf Drift in SiC Bipolar Power Devices , 2006 .

[5]  H. Tsuchida,et al.  Comparison of Propagation and Nucleation of Basal Plane Dislocations in 4H-SiC(000-1) and (0001) Epitaxy , 2006 .

[6]  T. Sudarshan,et al.  Mechanism of eliminating basal plane dislocations in SiC thin films by epitaxy on an etched substrate , 2006 .

[7]  J. Perrin,et al.  High-speed homoepitaxy of SiC from methyltrichlorosilane by chemical vapor deposition , 2005 .

[8]  M. Capano,et al.  Growth and characterization of 4H-SiC epilayers on substrates with different off-cut angles , 2005 .

[9]  H. Matsunami,et al.  Effects of C/Si ratio in fast epitaxial growth of 4H-SiC(0001) by vertical hot-wall chemical vapor deposition , 2005 .

[10]  U. Gerstmann,et al.  A New Model for the DI-Luminescence in 6H-SiC , 2005 .

[11]  A. Henry,et al.  Deep levels created by low energy electron irradiation in 4H-SiC , 2004 .

[12]  K. Kojima,et al.  Influence of growth conditions on basal plane dislocation in 4H-SiC epitaxial layer , 2004 .

[13]  H. Matsunami,et al.  Low-Concentration Deep Traps in 4H-SiC Grown with High Growth Rate by Chemical Vapor Deposition , 2004 .

[14]  S. Ha,et al.  Nucleation sites of recombination-enhanced stacking fault formation in silicon carbide p-i-n diodes , 2004 .

[15]  H. Tsuchida,et al.  Evaluation of Free Carrier Lifetime and Deep Levels of the Thick 4H-SiC Epilayers , 2004 .

[16]  K. Kojima,et al.  Influence of C/Si Ratio on the 4H-SiC (0001) Epitaxial Growth and a Keynote for High-Rate Growth , 2004 .

[17]  H. Lendenmann,et al.  Properties and origins of different stacking faults that cause degradation in SiC PiN diodes , 2004 .

[18]  Marek Skowronski,et al.  Dislocation conversion in 4H silicon carbide epitaxy , 2002 .

[19]  S. Öberg,et al.  Alphabet luminescence lines in 4H-SiC , 2002 .

[20]  K. Kojima,et al.  High-Rate Epitaxial Growth of 4H-SiC Using a Vertical-Type, Quasi-Hot-Wall CVD Reactor , 2002 .

[21]  H. Tsuchida,et al.  Epitaxial growth of thick 4H–SiC layers in a vertical radiant-heating reactor , 2002 .

[22]  E. Janzén,et al.  Electrical Activity of Residual Boron in Silicon Carbide , 2002 .

[23]  H. Matsunami,et al.  Reduction of doping and trap concentrations in 4H-SiC epitaxial layers grown by chemical vapor deposition , 2001 .

[24]  A. Ellison,et al.  High temperature CVD growth of SiC , 1999 .

[25]  Tsunenobu Kimoto,et al.  Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy , 1997 .

[26]  J. Bergman,et al.  Deep level defects in electron-irradiated 4H SiC epitaxial layers , 1997 .

[27]  Philip G. Neudeck,et al.  Site‐competition epitaxy for superior silicon carbide electronics , 1994 .

[28]  S. D. Brotherton The width of the non-steady state transition region in deep level impurity measurements , 1983 .

[29]  W. J. Choyke,et al.  Photoluminescence of Radiation Defects in Ion-Implanted 6 H SiC , 1972 .

[30]  M. Pons,et al.  Numerical modeling of SiC-CVD in a horizontal hot-wall reactor , 2006 .