Measurement of the flux-averaged inclusive charged-current electron neutrino and antineutrino cross section on argon using the NuMI beam and the MicroBooNE detector

We present a measurement of the combined $\nu_e$ + $\bar{\nu}_e$ flux-averaged charged-current inclusive cross section on argon using data from the MicroBooNE liquid argon time projection chamber (LArTPC) at Fermilab. Using the off-axis flux from the NuMI beam, MicroBooNE has reconstructed 214 candidate $\nu_e$ + $\bar{\nu}_e$ interactions with an estimated exposure of 2.4$\times10^{20}$ protons on target. Given the estimated purity of 38.6\%, this implies the observation of 80 $\nu_e$ + $\bar{\nu}_e$ events in argon, the largest such sample to date. The analysis includes the first demonstration of a fully automated application of a dE/dx-based particle discrimination technique of electron and photon induced showers in a LArTPC neutrino detector. We measure the $\nu_e + \bar{\nu}_e$ flux-averaged charged-current total cross section to be ${6.84\pm\!1.51~\textrm{(stat.)}\pm\!2.33~\textrm{(sys.)}\!\times\!10^{-39}~\textrm{cm}^{2}/~\textrm{nucleon}}$, for neutrino energies above 250 MeV and an average neutrino flux energy of 905 MeV when this threshold is applied. The measurement is sensitive to neutrino events where the final state electron momentum is above 48 MeV/c, includes the entire angular phase space of the electron, and is in agreement with the theoretical predictions from \texttt{GENIE} and \texttt{NuWro}. This measurement is also the first demonstration of electron neutrino reconstruction in a surface LArTPC in the presence of cosmic ray backgrounds, which will be a crucial task for surface experiments like those that comprise the Short-Baseline Neutrino (SBN) Program at Fermilab.

R. K. Neely | J. I. Crespo-Anadón | M. Convery | V. Radeka | K. Mason | M. Murphy | A. Ereditato | G. Cerati | T. Bolton | M. Mooney | S. Gollapinni | J. Asaadi | H. Greenlee | W. Ketchum | M. Kirby | S. Söldner-Rembold | Y. Tsai | J. Zennamo | S. Wolbers | T. Yang | T. Usher | P. Spentzouris | M. Bishai | M. Rosenberg | D. Franco | B. Viren | W. Wu | E. Church | R. Guenette | V. Papavassiliou | M. Wospakrik | L. Ren | A. Marchionni | G. Barr | G. Zeller | K. Mistry | S. Prince | M. Weber | H. Wei | O. Palamara | V. Paolone | P. Nienaber | D. Naples | W. Seligman | L. Camilleri | G. Horton-Smith | M. Shaevitz | J. Spitz | K. Terao | M. Toups | S. Balasubramanian | C. Zhang | W. Louis | N. Tagg | S. Dytman | P. Guzowski | B. Kirby | I. Kreslo | J. Nowak | J. Raaf | T. Strauss | T. Wongjirad | Y. Chen | W. Gu | X. Ji | B. Littlejohn | X. Qian | B. Baller | F. Cavanna | B. Fleming | C. James | G. Karagiorgi | C. Mariani | J. Marshall | C. Moore | Ž. Pavlović | L. Rochester | D. Schmitz | M. Soderberg | M. Stancari | A. Szelc | A. Blake | S. Berkman | S. Dennis | K. Duffy | A. Furmanski | P. Hamilton | J. H. Jo | M. del Tutto | I. Lepetic | A. Schukraft | R. An | N. Foppiani | E. Gramellini | C. Barnes | A. Hourlier | R. Sharankova | W. Tang | N. McConkey | B. Eberly | J. Mousseau | P. Green | S. Gardiner | A. Papadopoulou | V. Basque | D. Caratelli | R. Diurba | L. Dominé | R. Fitzpatrick | D. Garcia-Gamez | G. Ge | O. Goodwin | R. Itay | L. Jiang | Y. Jwa | R. LaZur | D. Lorca | X. Luo | J. Martín-Albo | A. Mastbaum | J. Mills | T. Mohayai | J. Moon | A. Moor | A. Paudel | A. Rafique | M. Reggiani-Guzzo | H. Rogers | B. Russell | J. Sinclair | A. Smith | M. Uchida | Z. Williams | R. Dorrill | P. Abratenko | M. Alrashed | J. Anthony | A. Ashkenazi | L. Bathe-Peters | O. Benevides Rodrigues | A. Bhanderi | A. Bhat | I. Caro Terrazas | R. Castillo Fernandez | D. Cianci | J. Conrad | L. Cooper-Troendle | D. Devitt | L. Escudero Sanchez | J. Evans | G. Fiorentini Aguirre | E. Hall | O. Hen | J. Jan de Vries | R. A. Johnson | N. Kamp | T. Kobilarcik | K. Li | Y. Li, | D. Marsden | D. Martinez Caicedo | V. Meddage | T. Mettler | K. Miller | A. Mogan | A. Navrer-Agasson | S. Pate | E. Piasetzky | I. Ponce-Pinto | D. Porzio | J. Rodriguez Rondon | M. Ross-Lonergan | G. Scanavini | E. Snider | S. Soleti | J. S. John | K. Sutton | S. Sword-Fehlberg | C. Thorpe | W. Van De Pontseele | G. Yarbrough | L. Yates | C. Hill | L. Hagaman | N. Kaneshige | E. Yandel | Z. Pavlovic | L. Mora Lepin | Rui An | R. Neely | L. Escudero Sánchez | J. John | J. J. Evans | Y. Li | J. Jo | K. Li | C. Zhang

[1]  A. Falcone,et al.  Deep underground neutrino experiment: DUNE , 2022, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[2]  J. I. Crespo-Anadón,et al.  Measurement of the atmospheric muon rate with the MicroBooNE Liquid Argon TPC , 2020, Journal of Instrumentation.

[3]  C.Thorpe,et al.  Measurement of space charge effects in the MicroBooNE LArTPC using cosmic muons , 2020, Journal of Instrumentation.

[4]  J. I. Crespo-Anad'on,et al.  Long-baseline neutrino oscillation physics potential of the DUNE experiment , 2020, The European Physical Journal C.

[5]  Y. Kudenko,et al.  Hyper-Kamiokande , 2020, Journal of Instrumentation.

[6]  C. Bromberg,et al.  First measurement of electron neutrino scattering cross section on argon , 2020, 2004.01956.

[7]  Tejpreet Singh Golan,et al.  Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280 , 2020, Journal of High Energy Physics.

[8]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics , 2020, 2002.03005.

[9]  M. Hartz,et al.  Constraint on the Matter-Antimatter Symmetry-Violating Phase in Neutrino Oscillations. , 2019, 1910.03887.

[10]  J. Udias,et al.  Electron versus Muon Neutrino Induced Cross Sections in Charged Current Quasielastic Processes. , 2019, Physical review letters.

[11]  MicroBooNE collaboration C. Adams,et al.  First measurement of νμ charged-current π0 production on argon with the MicroBooNE detector , 2019, Physical Review D.

[12]  Ashutosh Kumar Singh,et al.  New constraints on oscillation parameters fromνeappearance andνμdisappearance in the NOvA experiment , 2018, Physical Review D.

[13]  D. A. Wickremasinghe,et al.  Significant Excess of Electronlike Events in the MiniBooNE Short-Baseline Neutrino Experiment. , 2018, Physical review letters.

[14]  J.Coleman,et al.  Hyper-Kamiokande Design Report , 2018, 1805.04163.

[15]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE , 2018, Journal of Instrumentation.

[16]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation , 2018, Journal of Instrumentation.

[17]  C. D. Moore,et al.  The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector , 2017, The European Physical Journal C.

[18]  E. L. Snider,et al.  LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors , 2017 .

[19]  D. A. Wickremasinghe,et al.  Design and Construction of the MicroBooNE Detector , 2016, 1612.05824.

[20]  B. Baller,et al.  First observation of low energy electron neutrinos in a liquid argon time projection chamber , 2016, 1610.04102.

[21]  A. Bodek,et al.  Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at ⟨E_{ν}⟩=3.6  GeV. , 2015, Physical review letters.

[22]  R. Hatcher,et al.  The NuMI Neutrino Beam , 2015, 1507.06690.

[23]  L. A. Soplin Neutrino Flux Prediction for the NuMI Beamline , 2016 .

[24]  Julia Yarba,et al.  The GENIE Neutrino Monte Carlo Generator: Physics and User Manual , 2015, 1510.05494.

[25]  M. Hartz,et al.  Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 π0 detector , 2015, 1503.08815.

[26]  A. Rappoldi,et al.  A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam , 2015, 1503.01520.

[27]  M. Hartz,et al.  Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector , 2014, 1407.7389.

[28]  R. Gran,et al.  Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV , 2013, 1307.8105.

[29]  Guan Hong Wu,et al.  The Fermilab Main Injector: high intensity operation and beam loss control , 2013, 1307.2934.

[30]  C. Bromberg,et al.  A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC , 2013, 1306.1712.

[31]  Tejpreet Singh Golan,et al.  NuWro: the Wroclaw Monte Carlo Generator of Neutrino Interactions , 2012 .

[32]  K. McFarland,et al.  Differences in Quasi-Elastic Cross-Sections of Muon and Electron Neutrinos , 2012, 1206.6745.

[33]  J. Nieves,et al.  Inclusive charged-current neutrino-nucleus reactions , 2011, 1102.2777.

[34]  C. D. Moore,et al.  Neutrino flux prediction at MiniBooNE , 2008, 0806.1449.

[35]  Ž. Pavlović,et al.  Observation of Disappearance of Muon Neutrinos in the NuMI Beam , 2008 .

[36]  J. Nieves,et al.  Inclusive quasielastic charged-current neutrino-nucleus reactions , 2004, nucl-th/0408005.

[37]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[38]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[39]  P. R. Sala,et al.  FLUKA: Present status and future developments , 1993 .

[40]  V. Brisson,et al.  Total cross sections for ve and ve interactions and search for neutrino oscillations and decay , 1978 .