A literature review on computational models for laminated composite and sandwich panels

The present paper is devoted to a state-of-the-art review on the computational treatment of laminated composite and sandwich panels. Over two hundred texts have been included in the survey with the focus put on theoretical models for multilayered plates and shells, and FEM implementation of various computational concepts. As a result of the review, one could notice a lack of a single numerical model capable for a universal representation of all layered composite and sandwich panels. Usually, with the increase of the range of rotations considered in the particular model, one can observe the decrease of the degree of complexity of the through-the-thickness representation of deformation profiles.

[1]  K. Y. Sze,et al.  An Eighteen-Node Hybrid-Stress Solid-Shell Element for Homogenous and Laminated Structures , 2008 .

[2]  Giuseppe Davi,et al.  Stress Fields in General Composite Laminates , 1996 .

[3]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .

[4]  S. T. Dennis,et al.  A Galerkin solution to geometrically nonlinear laminated shallow shell equations , 1997 .

[5]  Boštjan Brank,et al.  On composite shell models with a piecewise linear warping function , 2003 .

[6]  Y. K. Cheung,et al.  Three-dimensional finite element analysis of thick laminated plates , 1995 .

[7]  Dewey H. Hodges,et al.  Asymptotic generalization of Reissner–Mindlin theory: accurate three-dimensional recovery for composite shells , 2002 .

[8]  Anthony N. Palazotto,et al.  The Collapse of Composite Cylindrical Panels with Various Thickness using Finite Element Analysis. , 1994 .

[9]  Gennady M. Kulikov,et al.  Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions—Part II: Computational Aspects , 2005 .

[10]  V. G. Piskunov,et al.  Evolution of the Theory of Laminated Plates and Shells , 2002 .

[11]  N. J. Pagano,et al.  Free Edge Stress Fields in Composite Laminates. , 1978 .

[12]  Keejoo Lee,et al.  A Postprocessing Approach to Determine Transverse Stresses in Geometrically Nonlinear Composite and Sandwich Structures , 2003 .

[13]  E. Carrera C0 REISSNER–MINDLIN MULTILAYERED PLATE ELEMENTS INCLUDING ZIG-ZAG AND INTERLAMINAR STRESS CONTINUITY , 1996 .

[14]  David J. Malcolm,et al.  Nonlinear Sandwich Shell and Cosserat Surface Theory , 1972 .

[15]  J. N. Reddy,et al.  On a moderate rotation theory of laminated anisotropic shells—Part 1. Theory☆ , 1990 .

[16]  Stanley B. Dong,et al.  On a Laminated Orthotropic Shell Theory Including Transverse Shear Deformation , 1972 .

[17]  Ashraf M. Zenkour,et al.  Non-linear thermal effects on the bending response of cross-ply laminated plates using refined first-order theory , 2000 .

[18]  Tsu-Wei Chou,et al.  Mechanical Properties of Composites , 1980 .

[19]  Worsak Kanok-Nukulchai,et al.  An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells , 2004 .

[20]  K. D. Kim,et al.  Buckling behaviour of composite panels using the finite element method , 1996 .

[21]  Yogesh M. Desai,et al.  A novel 3D mixed finite‐element model for statics of angle‐ply laminates , 2003 .

[22]  J. Whitney,et al.  Shear Correction Factors for Orthotropic Laminates Under Static Load , 1973 .

[23]  Maenghyo Cho,et al.  Efficient higher-order shell theory for laminated composites , 1995 .

[24]  Ted Belytschko,et al.  Homogenization of sandwich structures , 2004 .

[25]  Rüdiger Schmidt,et al.  Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures , 1997 .

[26]  J N Reddy Analysis of Layered Composite Plates Accounting for Large Deflections and Transverse Shear Strains. , 1981 .

[27]  C. Hong,et al.  Buckling behavior of laminated composite cylindrical panels under axial compression , 1988 .

[28]  David J. Malcolm,et al.  Lagrangian Formulation of Sandwich Shell Theory , 1973 .

[29]  Ghazi Abu-Farsakh,et al.  Effect of material nonlinearity in unidirectional composites on the behavior of beam structures , 2000 .

[30]  Gennady M. Kulikov,et al.  Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions—Part I: Foundations , 2005 .

[31]  C. Borsellino,et al.  Experimental and numerical evaluation of sandwich composite structures , 2004 .

[32]  H. Adeli,et al.  A finite element approach to global-local modeling in composite laminate analysis , 1995 .

[33]  Yavuz Başar,et al.  Refined shear-deformation models for composite laminates with finite rotations , 1993 .

[34]  L. A. Schmit,et al.  SYNOPTIC: Finite Deflection Discrete Element Analysis of Sandwich Plates and Cylindrical Shells with Laminated Faces , 1970 .

[35]  Pietro Salvini,et al.  Buckling Behaviour of Composite Shallow Shells: Static and Dynamic Loading , 1994 .

[36]  Anthony N. Palazotto,et al.  Nonlinear displacement-based finite-element analyses of composite shells: a new total Lagrangian formulation , 1995 .

[37]  Yavuz Başar,et al.  Interlaminar stress analysis of composites: Layer-wise shell finite elements including transverse strains , 1995 .

[38]  Ahmed K. Noor,et al.  A posteriori estimates for shear correction factors in multilayered composite cylinders , 1989 .

[39]  Todd O. Williams,et al.  A general theory for laminated plates with delaminations , 1997 .

[40]  Y. G. Youssif,et al.  A refined equivalent single-layer model of geometrically non-linear doubly curved layered shells using mixed variational approach , 2001 .

[41]  Franz G. Rammerstorfer,et al.  Computational Methods in Composite Analysis and Design , 1994 .

[42]  T. Lewiński,et al.  On recent developments in the homogenization theory of elastic plates and their application to optimal design: Part I , 1993 .

[43]  Klaus Rohwer,et al.  Analyzing Laminated Structures from Fibre-Reinforced Composite Material - An Assessment , 2005 .

[44]  Romil Tanov,et al.  A simple correction to the first-order shear deformation shell finite element formulations , 2000 .

[45]  W. H. Wittrick Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin's plate theory , 1987 .

[46]  Gangan Prathap,et al.  A field-consistent, four-noded, laminated anisotropic plate/shell element , 1987 .

[47]  Noboru Kikuchi,et al.  An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates , 2004 .

[48]  A. Mawenya,et al.  Finite element bending analysis of multilayer plates , 1974 .

[49]  M. A. Crisfield,et al.  Some aspects of the non-linear finite element method , 1997 .

[50]  Kostas P. Soldatos,et al.  A method for improving the stress analysis performance of one- and two-dimensional theories for laminated composites , 1997 .

[51]  Anthony N. Palazotto,et al.  Large-rotation snap-through buckling in laminated cylindrical panels , 1991 .

[52]  Paolo Gaudenzi,et al.  A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates , 1995 .

[53]  Rakesh K. Kapania,et al.  Geometrically Nonlinear Finite Element Analysis of Imperfect Laminated Shells , 1986 .

[54]  Herbert A. Mang,et al.  The Fifth World Congress on Computational Mechanics , 2002 .

[55]  K. Sawamiphakdi,et al.  Large deformation analysis of laminated shells by ftnife element method , 1981 .

[56]  H. Rothert,et al.  Solution of a laminated cylindrical shell using an unconstrained third-order theory , 1998 .

[57]  Anthony N. Palazotto,et al.  Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher-order shear theory , 1989 .

[58]  Tarun Kant,et al.  Estimation of transverse/interlaminar stresses in laminated composites – a selective review and survey of current developments , 2000 .

[59]  Wilfried Becker,et al.  Effective stress-strain relations for two-dimensional cellular sandwich cores: Homogenization, material models, and properties , 2002 .

[60]  Jiann-Quo Tarn,et al.  A refined asymptotic theory and computational model for multilayered composite plates , 1997 .

[61]  Erasmo Carrera,et al.  Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: Derivation of finite element matrices , 2002 .

[62]  Pierre Ladevèze,et al.  Multiscale modelling and computational strategies for composites , 2004 .

[63]  Mikhail Itskov,et al.  Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements , 2000 .

[64]  Kenneth E. Evans,et al.  Numerical prediction of the mechanical properties of anisotropic composite materials , 1988 .

[65]  Virat Chomkwah Finite element analysis of laminated composite plates , 1989 .

[66]  George J. Dvorak,et al.  Composite materials: Inelastic behavior, damage, fatigue and fracture , 2000 .

[67]  Ugo Galvanetto,et al.  A Three-dimensional Stress Recovery Procedure for Composite Materials , 1998 .

[68]  K. Chandrashekhara,et al.  Nonlinear analysis of laminated shells including transverse shear strains , 1985 .

[69]  Rüdiger Schmidt,et al.  A Refined Small Strain and Moderate Rotation Theory of Elastic Anisotropic Shells , 1988 .

[70]  Aouni A. Lakis,et al.  GENERAL EQUATIONS OF ANISOTROPIC PLATES AND SHELLS INCLUDING TRANSVERSE SHEAR DEFORMATIONS, ROTARY INERTIA AND INITIAL CURVATURE EFFECTS , 2000 .

[71]  Erasmo Carrera,et al.  Multilayered shell finite element with interlaminar continuous shear stresses : a refinement of the Reissner-Mindlin formulation , 2000 .

[72]  Reaz A. Chaudhuri Analysis of laminated shear-flexible angle-ply plates , 2005 .

[73]  T. K. Varadan,et al.  Large deflection analysis of laminated composite plates , 1993 .

[74]  J. N. Reddy,et al.  On first‐ and second‐order moderate rotation theories of laminated plates , 1992 .

[75]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[76]  Erasmo Carrera,et al.  A family of shear-deformable shell finite elements for composite structures , 2000 .

[77]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[78]  Franz G. Rammerstorfer,et al.  Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures , 1994 .

[79]  Erdogan Madenci,et al.  Complete stress field in sandwich panels with a new triangular finite element of single-layer theory , 2005 .

[80]  A. B. Donaldson,et al.  Composite materials and their use in structures , 1976 .

[81]  A. Kelly,et al.  Strength of Fibrous Composite Materials , 1972 .

[82]  K. Y. Sze,et al.  A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses , 2002 .

[83]  E. Reissner,et al.  A Consistent Treatment of Transverse Shear Deformations in Laminated Anisotropic Plates , 1972 .

[84]  Marcelo Epstein,et al.  A finite element formulation for multilayered and thick plates , 1983 .

[85]  Erasmo Carrera,et al.  CZ° requirements—models for the two dimensional analysis of multilayered structures , 1997 .

[86]  E. Carrera,et al.  An evaluation of geometrical nonlinear effects of thin and moderately thick multilayered composite shells , 1997 .

[87]  A. E. Bogdanovich,et al.  Three-dimensional variational analysis of Pagano's problems for laminated composite plates , 2000 .

[88]  Alan T. Nettles,et al.  Basic mechanics of laminated composite plates , 1994 .

[89]  George Z. Voyiadjis,et al.  Non-linear finite element analysis of composite panels , 1999 .

[90]  Wilfried B. Krätzig,et al.  ‘Best’ transverse shearing and stretching shell theory for nonlinear finite element simulations , 1993 .

[91]  Maenghyo Cho,et al.  A postprocess method using a displacement field of higher-order shell theory , 1996 .

[92]  Ki-Du Kim,et al.  Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains , 2007 .

[93]  C. M. Dakshina Moorthy,et al.  Modelling of laminates using a layerwise element with enhanced strains , 1998 .

[94]  K. Y. Sze,et al.  Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .

[95]  Nielen Stander,et al.  A 24 d.o.f. four‐node flat shell finite element for general unsymmetric orthotropic layered composites , 1998 .

[96]  Erasmo Carrera,et al.  Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations , 2002 .

[97]  A. Noor,et al.  Assessment of Computational Models for Multilayered Composite Shells , 1990 .

[98]  J. N. Reddy,et al.  Shear Deformation Plate and Shell Theories: From Stavsky to Present , 2004 .

[99]  C. Sun,et al.  Analysis of asymmetric composite laminates , 1988 .

[100]  Raghu Natarajan,et al.  Finite element analysis of laminated composite plates , 1979 .

[101]  R. Ali Use of finite element technique for the analysis of composite structures , 1996 .

[102]  Erasmo Carrera,et al.  Mixed layer-wise models for multilayered plates analysis , 1998 .

[103]  Mitteilung,et al.  FE – Modeling of Fiber Reinforced Polymer Structures , 2005 .

[104]  Hemendra Arya,et al.  A zigzag model for laminated composite beams , 2002 .

[105]  H. E. Ling-Hui Non-linear theory of laminated shells accounting for continuity conditions of displacements and tractions at layer interfaces , 1995 .

[106]  Franz G. Rammerstorfer,et al.  A layered composite shell element for elastic and thermoelastic stress and stability analysis at large deformations , 1990 .

[107]  Ferdinando Auricchio,et al.  A mixed‐enhanced finite‐element for the analysis of laminated composite plates , 1999 .

[108]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[109]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[110]  Liviu Librescu,et al.  Recent developments in the modeling and behavior of advanced sandwich constructions: a survey , 2000 .

[111]  Werner Wagner,et al.  Coupling of two- and three-dimensional composite shell elements in linear and non-linear applications , 1996 .

[112]  Erasmo Carrera,et al.  An assessment of Mixed and Classical Theories on Global and Local Response of Multilayered, Orthotropic Plates , 2000 .

[113]  Wilfried B. Krätzig,et al.  On `best' shell models – From classical shells, degenerated and multi-layered concepts to 3D , 2003 .

[114]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[115]  K. H. Lee,et al.  A predictor-corrector zig-zag model for the bending of laminated composite plates , 1996 .

[116]  J. N. Reddy,et al.  On refined computational models of composite laminates , 1989 .

[117]  J. N. Reddy,et al.  An accurate determination of stresses in thick laminates using a generalized plate theory , 1990 .

[118]  Heinrich Rothert,et al.  A solution of laminated cylindrical shells using an unconstrained third-order theory , 1995 .

[119]  E. Reissner,et al.  Small bending and stretching of sandwich-type shells , 1977 .

[120]  J. N. Reddy,et al.  Energy principles and variational methods in applied mechanics , 2002 .

[121]  Rolands Rikards,et al.  Analysis for buckling and vibrations of composite stiffened shells and plates , 2001 .

[122]  R. P. Shimpi,et al.  A Review of Refined Shear Deformation Theories for Isotropic and Anisotropic Laminated Beams , 2001 .

[123]  L. Vu-Quoc,et al.  Geometrically exact sandwich shells: The dynamic case , 2000 .

[124]  Erdogan Madenci,et al.  Nonlinear analysis of laminates through a mindlin-type shear deformable shallow shell element , 1997 .

[125]  J. N. Reddy,et al.  Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures , 2007 .

[126]  Song Cen,et al.  A new hybrid-enhanced displacement-based element for the analysis of laminated composite plates , 2002 .

[127]  J. N. Reddy,et al.  ANALYSIS OF COMPOSITE PLATES USING VARIOUS PLATE THEORIES, PART 2: FINITE ELEMENT MODEL AND NUMERICAL RESULTS , 1998 .

[128]  Liyong Tong,et al.  3D Fibre Reinforced Polymer Composites , 2002 .

[129]  Hamdan N. Al-Ghamedy,et al.  Finite element formulation of a third order laminated finite rotation shell element , 2002 .

[130]  Marco Savoia,et al.  Assessment of plate theories for multilayered angle-ply plates , 1997 .

[131]  J. N. Reddy,et al.  On the Generalization of Displacement-Based Laminate Theories , 1989 .

[132]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[133]  Ronald C. Averill,et al.  First-order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels , 2000 .

[134]  K. Y. Sze,et al.  Predictor–corrector procedures for analysis of laminated plates using standard Mindlin finite element models , 2000 .

[135]  Chang Sun Hong,et al.  An improved arc-length method for postbuckling analysis of composite cylindrical panels , 1994 .

[136]  Hsuan-Teh Hu Buckling analyses of fiber-composite laminate plates with material nonlinearity , 1995 .

[137]  Holm Altenbach,et al.  An alternative determination of transverse shear stiffnesses for sandwich and laminated plates , 2000 .

[138]  Gennady M. Kulikov,et al.  Non-linear analysis of multilayered shells under initial stress , 2001 .

[139]  B. Brank,et al.  On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells , 1995 .

[140]  Yong Hyup Kim,et al.  Stress recovery in laminated composite and sandwich panels undergoing finite rotation , 2003 .

[141]  Stefanos Vlachoutsis,et al.  Shear correction factors for plates and shells , 1992 .

[142]  Jakub Marcinowski,et al.  Geometrically nonlinear static analysis of sandwich plates and shells , 2003 .

[143]  Dieter H. Pahr,et al.  A fast multi-scale analyzing tool for the investigation of perforated laminates , 2004 .

[144]  N J Hoff,et al.  Bending and buckling of rectangular sandwich plates , 1950 .

[145]  K. Chandrashekhara,et al.  Static Response of Composite Circular Cylindrical Shells Studied by Different Theories , 1998 .

[146]  Gennady M. Kulikov,et al.  Simple and effective elements based upon Timoshenko–Mindlin shell theory , 2002 .

[147]  Liviu Librescu,et al.  Further results concerning the refined theory of anisotropic laminated composite plates , 1994 .

[148]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[149]  Dewey H. Hodges,et al.  A Geometrically Nonlinear Shear Deformation Theory for Composite Shells , 2004 .

[150]  Amâncio Fernandes A mixed formulation for elastic multilayer plates , 2003 .

[151]  Grzegorz Jemielita,et al.  Coefficients of shear correction in transversely nonhomogeneous moderately thick plates , 2002 .

[152]  Ozden O. Ochoa,et al.  Modeling progressive damage in composites: a shear deformable element for ABAQUS® , 1996 .

[153]  Raimund Rolfes,et al.  Improved transverse shear stresses in composite finite elements based on first order shear deformation theory , 1997 .

[154]  Naoki Takano,et al.  The formulation of homogenization method applied to large deformation problem for composite materials , 2000 .

[155]  Gottfried Laschet,et al.  Postbuckling finite element analysis of composite panels , 1990 .

[156]  T. Pian,et al.  An eighteen-node hybrid-stress solid-shell element for homogeneous and laminated structures , 2002 .

[157]  Carlos A. Felippa,et al.  A unified formulation of small-strain corotational finite elements: I. Theory , 2005 .

[158]  Michael R Wisnom,et al.  The effect of fibre rotation in ±45° tension tests on measured shear properties , 1995 .

[159]  Arif Masud,et al.  Finite-Element Formulation for Analysis of Laminated Composites , 1999 .

[160]  Franz G. Rammerstorfer,et al.  Composite and Sandwich Shells , 1992 .

[161]  R. Jones,et al.  Mechanics of Composite Materials , 2018 .

[162]  Carlos A. Mota Soares,et al.  Buckling behaviour of laminated composite structures using a discrete higher-order displacement model , 1996 .

[163]  Suong V. Hoa,et al.  Partial hybrid finite elements for composite laminates , 1998 .

[164]  Hidenori Murakami,et al.  A Composite Plate Theory for Arbitrary Laminate Configurations. , 1987 .

[165]  L. M. Habip A survey of modern developments in the analysis of sandwich structures. , 1965 .

[166]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[167]  Liviu Librescu,et al.  Advances in the Structural Modeling of Elastic Sandwich Panels , 2004 .

[168]  E. Sacco,et al.  MITC finite elements for laminated composite plates , 2001 .

[169]  G. Simitses Buckling of moderately thick laminated cylindrical shells: a review , 1996 .

[170]  J. N. Reddy,et al.  Analysis of composite plates using various plate theories -Part 1: Formulation and analytical solutions , 1998 .

[171]  A. Guz,et al.  Special Issue on Micromechanics of Composite Materials: Focus on Ukrainian Research—Introduction , 1992 .

[172]  M. Di Sciuva,et al.  An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates , 1987 .

[173]  Helmut J. Böhm,et al.  Mechanics of Microstructured Materials , 2004 .

[174]  de R René Borst,et al.  Finite element procedure for modelling fibre metal laminates , 1995 .

[175]  A. Noor,et al.  Assessment of computational models for sandwich panels and shells , 1995 .

[176]  J. N. Reddy,et al.  On laminated composite plates with integrated sensors and actuators , 1999 .

[177]  Xiaoping Shu,et al.  A refined theory of laminated shells with higher-order transverse shear deformation , 1997 .

[178]  Paul Seide,et al.  An approximate method for prediction of transverse shear stresses in a laminated shell , 1987 .

[179]  N. J. Pagano,et al.  Elastic Behavior of Multilayered Bidirectional Composites , 1972 .

[180]  Maenghyo Cho,et al.  Enhanced First-Order Shear Deformation Theory for Laminated and Sandwich Plates , 2005 .

[181]  Ala Tabiei,et al.  Geometrically nonlinear analysis of laminated composite thin shells using a modified first-order shear deformable element-based Lagrangian shell element , 2008 .

[182]  T. LEWI On displacement-based theories of sandwich plates with soft core , .

[183]  J. N. Reddy,et al.  On a moderate rotation theory of laminated anisotropic shells—Part 2. Finite-element analysis , 1990 .

[184]  K. H. Lee,et al.  An improved zig-zag model for the bending of laminated composite shells , 1990 .

[185]  X. G. Tan,et al.  Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .

[186]  A. Sheikh,et al.  A FINITE ELEMENT FORMULATION FOR THE ANALYSIS OF LAMINATED COMPOSITE SHELLS , 2004 .

[187]  P. Kłosowski,et al.  Numerical treatment of elasto viscoplastic shells in the range of moderate and large rotations , 2004 .

[188]  Ferdinando Auricchio,et al.  Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT , 1999 .

[189]  Erasmo Carrera,et al.  A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates , 2000 .

[190]  Mohamad S. Qatu,et al.  Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells , 2002 .

[191]  Ahmed K. Noor,et al.  Assessment of computational models for multilayered composite cylinders , 1991 .

[192]  V. G. Piskunov,et al.  An Iterative Analytical Theory in the Mechanics of Layered Composite Systems , 2003 .

[193]  Holm Altenbach,et al.  TRENDS IN ENGINEERING PLATE THEORIES , 2001 .

[194]  Liviu Librescu,et al.  Substantiation of a shear-deformable theory of anisotropic composite laminated shells accounting for the interlaminae continuity conditions , 1991 .

[195]  Gennady M. Kulikov,et al.  Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I Timoshenko-Mindlin shell theory , 2003 .

[196]  Peter M. Pinsky,et al.  A multi-director formulation for nonlinear elastic-viscoelastic layered shells , 1986 .

[197]  I. Kunin,et al.  Theory of anisotropic plates : strength, stability, and vibrations , 1970 .

[198]  Bernhard A. Schrefler,et al.  On recovery of stresses for a multi-layered beam element , 1993 .

[199]  J. N. Reddy,et al.  A GENERAL NON-LINEAR THIRD-ORDER THEORY OF PLATES WITH MODERATE THICKNESS , 1990 .

[200]  Ferdinando Auricchio,et al.  Refined First-Order Shear Deformation Theory Models for Composite Laminates , 2003 .

[201]  Moussa Karama,et al.  Comparison of various laminated plate theories , 1997 .

[202]  Norman F. Knight,et al.  On a consistent first-order shear-deformation theory for laminated plates , 1997 .

[203]  Steven L Stockton Engineering and Design: Composite Materials for Civil Engineering Structures , 1997 .

[204]  Dewey H. Hodges,et al.  On asymptotically correct linear laminated plate theory , 1996 .

[205]  P. M. Naghdi,et al.  Finite Deformation of Elastic Rods and Shells , 1981 .

[206]  K. Chandrashekhara,et al.  Assessment of Shell Theories for the Static Analysis of Cross-Ply Laminated Circular Cylindrical Shells , 1995 .

[207]  N. J. Pagano,et al.  The significance of eective modulus theory (homogenization) in composite laminate mechanics , 2000 .

[208]  S. W. Lee,et al.  A nine-node assumed-strain finite element for composite plates and shells , 1987 .

[209]  Dahsin Liu,et al.  GENERALIZED LAMINATE THEORIES BASED ON DOUBLE SUPERPOSITION HYPOTHESIS , 1997 .

[210]  Liviu Librescu,et al.  Analytical solution of a refined shear deformation theory for rectangular composite plates , 1987 .

[211]  E. Carrera On the use of the Murakami's zig-zag function in the modeling of layered plates and shells , 2004 .

[212]  P. Frank Pai Total-Lagrangian Formulation and Finite-Element Analysis of Highly Flexible Plates and Shells , 2007 .

[213]  Hedi Hassis,et al.  A high-order theory for static–dynamic analysis of laminated plates using a special warping model , 2002 .

[214]  Anthony N. Palazotto,et al.  Large displacement and rotational formulation for laminated shells including parabolic transverse shear , 1990 .

[215]  Prodyot K. Basu,et al.  Materially and geometrically nonlinear analysis of laminated anisotropic plates by p-version of FEM , 2003 .

[216]  Hidenori Murakami,et al.  A high-order laminated plate theory with improved in-plane responses☆ , 1987 .

[217]  R. P. Shimpi,et al.  A Review of Refined Shear Deformation Theories of Isotropic and Anisotropic Laminated Plates , 2002 .

[218]  Perngjin F. Pai,et al.  A new look at shear correction factors and warping functions of anisotropic laminates , 1995 .

[219]  Norman F. Knight,et al.  An assessment of shell theories for buckling ofcircular cylindrical laminated composite panels loaded inaxial compression , 1999 .

[220]  Gilson R. Lomboy,et al.  A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells , 2003 .

[221]  Vincent Manet,et al.  The use of ANSYS to calculate the behaviour of sandwich structures , 1998 .

[222]  T. C. Kennedy,et al.  Nonlinear viscoelastic analysis of composite plates and shells , 1998 .

[223]  K. P. Rao,et al.  A rectangular laminated anisotropic shallow thin shell finite element , 1978 .

[224]  Rüdiger Schmidt,et al.  Large rotations in first-order shear deformation FE analysis of laminated shells , 2006 .

[225]  Wilfried B. Krätzig,et al.  Multi-layer multi-director concepts for D-adaptivity in shell theory , 2002 .

[226]  J. N. Reddy,et al.  A higher-order shear deformation theory of laminated elastic shells , 1985 .

[227]  Y. Başar,et al.  Finite-rotation theories for composite laminates , 1993 .

[228]  H. Parisch,et al.  An investigation of a finite rotation four node assumed strain shell element , 1991 .

[229]  Norman F. Knight,et al.  A refined first-order shear-deformation theory and its justification by plane strain bending problem of laminated plates , 1996 .

[230]  E. Carrera Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells , 2001 .

[231]  Anthony N. Palazotto,et al.  Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher order shear theory , 1988 .

[232]  S. T. Mau,et al.  A Refined Laminated Plate Theory , 1973 .

[233]  Romil Tanov,et al.  A note on finite element implementation of sandwich shell homogenization , 2000 .

[234]  Liviu Librescu,et al.  Refined geometrically nonlinear theories of anisotropic laminated shells , 1987 .

[235]  Marco Di Sciuva,et al.  A third-order triangular multilayered plate finite element with continuous interlaminar stresses. , 1995 .

[236]  Maenghyo Cho,et al.  A postprocess method for laminated shells with a doubly curved nine-noded finite element , 2000 .

[237]  Anthony N. Palazotto,et al.  Non-linear static–dynamic finite element formulation for composite shells , 2003 .

[238]  Taehyo Park,et al.  An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells , 2002 .

[239]  E. Morozov,et al.  Mechanics and analysis of composite materials , 2001 .

[240]  K. S. Kim,et al.  Two simple and efficient displacement‐based quadrilateral elements for the analysis of composite laminated plates , 2004 .

[241]  Venkat Aitharaju C0 Zigzag Kinematic Displacement Models for the Analysis of Laminated Composites , 1999 .