Number of Occurrences of powers in Strings

We show a Θ(n log n) bound on the maximal number of occurrences of primitively-rooted k-th powers occurring in a string of length n for any integer k, k ≥ 2. We also show a Θ(n2) bound on the maximal number of primitively-rooted powers with fractional exponent e, 1 < e < 2, occurring in a string of length n. This result holds obviously for their maximal number of occurrences. The first result contrasts with the linear number of occurrences of maximal repetitions of exponent at least 2.

[1]  Franco P. Preparata,et al.  Optimal Off-Line Detection of Repetitions in a String , 1983, Theor. Comput. Sci..

[2]  Michael G. Main,et al.  An O(n log n) Algorithm for Finding All Repetitions in a String , 1984, J. Algorithms.

[3]  Wojciech Rytter,et al.  The Number of Runs in a String: Improved Analysis of the Linear Upper Bound , 2006, STACS.

[4]  William F. Smyth,et al.  How many runs can a string contain? , 2008, Theor. Comput. Sci..

[5]  Lucian Ilie,et al.  Towards a Solution to the "Runs" Conjecture , 2008, CPM.

[6]  Maxime Crochemore,et al.  An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..

[7]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[8]  Lucian Ilie,et al.  Maximal repetitions in strings , 2008, J. Comput. Syst. Sci..

[9]  Gregory Kucherov,et al.  On Maximal Repetitions in Words , 1999, FCT.

[10]  Mathieu Giraud,et al.  Not So Many Runs in Strings , 2008, LATA.

[11]  Wojciech Rytter,et al.  Squares, cubes, and time-space efficient string searching , 1995, Algorithmica.

[12]  Michael G. Main,et al.  Detecting leftmost maximal periodicities , 1989, Discret. Appl. Math..

[13]  Hideo Bannai,et al.  New Lower Bounds for the Maximum Number of Runs in a String , 2008, Stringology.

[14]  Gregory Kucherov,et al.  Finding maximal repetitions in a word in linear time , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[15]  William F. Smyth,et al.  The maximum number of of runs in a string , 2003, IWOCA 2007.

[16]  Costas S. Iliopoulos,et al.  A Characterization of the Squares in a Fibonacci String , 1997, Theor. Comput. Sci..

[17]  Wojciech Rytter,et al.  The number of runs in a string , 2007, Inf. Comput..