Analyse et approximation numérique de systèmes d'interaction fluide-structure et de modèles de champ-de-phase

Ce manuscrit est compose de deux parties. La premiere partie porte d'une part sur l’analyse numerique de methodes d’approximations de systemes d’interaction fluide-structure et d'autre part, sur des questions associees de controle optimal. Des resultats de convergence de schemas numeriques et d’analyse d’erreurs sont obtenus pour une structure rigide immergee dans un fluide visqueux incompressible. Les schemas numeriques etudies sont bases sur des methodes d’approximation de type Lagrange-Galerkin avec des fonctions caracteristiques specifiques pour gerer les structures solides. Des simulations numeriques sont realisees pour des structures rigides et deformables, avec en particulier une application a la nage de poissons consideree comme un phenomene d’auto-propulsion. Les questions de controle optimal sont relatives a un probleme de controle en temps minimal pour la nage a bas nombre de Reynolds. La deuxieme partie du manuscrit concerne l’analyse et l’analyse numerique de modeles de champ-de-phase pour des problemes de transitions de phase (solidification et separation de phases). Des resultats d'existence et d’unicite de solutions pour des modeles de solidification isotherme et de separation de phases ont ete obtenus. Des methodes d’approximation par Elements Finis sont etudiees avec des estimations d’erreurs a priori et a posteriori.

[1]  C. M. Elliott,et al.  Global Existence and Stability of Solutions to the Phase Field Equations , 1990 .

[2]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[3]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[4]  Max D. Gunzburger,et al.  Navier-Stokes equations for incompressible flows: Finite-element methods , 1996 .

[5]  M. Tucsnak,et al.  Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid , 2002 .

[6]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[7]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[8]  Mathieu Coquerelle,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com Journal of Computational Physics xxx (2008) xxx–xxx , 2022 .

[9]  Céline Grandmont,et al.  Existence et unicité de solutions d'un problème de couplage fluide-structure bidimensionnel stationnaire , 1998 .

[10]  C. Grandmont,et al.  Existence for an Unsteady Fluid-Structure Interaction Problem , 2000 .

[11]  Stéphane Flotron Simulations numériques de phénomènes MHD-thermiques avec interface libre dans l"électrolyse de l"aluminium , 2013 .

[12]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[13]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[14]  S. McCormick,et al.  The fast adaptive composite grid (FAC) method for elliptic equation , 1986 .

[15]  Takéo Takahashi,et al.  Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain , 2003, Advances in Differential Equations.

[16]  Olivier Pironneau Finite Element Characteristic Methods Requiring no Quadrature , 2010, J. Sci. Comput..

[17]  L. Heltai,et al.  Numerical Strategies for Stroke Optimization of Axisymmetric Microswimmers , 2009, 0906.4502.

[18]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[19]  L. Hou,et al.  ANALYSIS OF A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM , 2003 .

[20]  Alexandre Caboussat,et al.  Numerical simulation of two-phase flow with interface tracking by adaptive Eulerian grid subdivision , 2012, Math. Comput. Model..

[21]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[22]  G. Taylor Analysis of the swimming of microscopic organisms , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Srinivasan Natesan,et al.  Arbitrary Lagrangian–Eulerian method for Navier–Stokes equations with moving boundaries , 2004 .

[24]  Williams,et al.  Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional navier-stokes equations and Newton's laws of motion , 1998, The Journal of experimental biology.

[25]  Qiang Du,et al.  Semidiscrete Finite Element Approximations of a Linear Fluid-Structure Interaction Problem , 2004, SIAM J. Numer. Anal..

[26]  Yvon Maday,et al.  A high-order characteristics/finite element method for the incompressible Navier-Stokes equations , 1997 .

[27]  Jean-Pierre Raymond,et al.  Null controllability in a fluid–solid structure model☆ , 2010 .

[28]  François Alouges,et al.  Optimal Strokes for Low Reynolds Number Swimmers: An Example , 2008, J. Nonlinear Sci..

[29]  Bertrand Maury,et al.  Fluid-particle flow: a symmetric formulation , 1997 .

[30]  Bertrand Maury Numerical Analysis of a Finite Element/Volume Penalty Method , 2009, SIAM J. Numer. Anal..

[31]  B. Desjardins,et al.  On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models , 1999 .

[32]  Michel Visonneau,et al.  Numerical methods for RANSE simulations of a self-propelled fish-like body , 2005 .

[33]  E. Purcell Life at Low Reynolds Number , 2008 .

[34]  F. Wilczek,et al.  Efficiencies of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.

[35]  Jean-Pierre Raymond,et al.  Feedback Stabilization of a Fluid-Structure Model , 2010, SIAM J. Control. Optim..

[36]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[37]  J. A. Sparenberg Survey of the mathematical theory of fish locomotion , 2002 .

[38]  Max Gunzburger,et al.  Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions , 2000 .

[39]  S. F. McCormick,et al.  Unigrid for Multigrid Simulation , 1983 .

[40]  Weak solutions to a phase-field model with non-constant thermal conductivity , 1997 .

[41]  G. Cottet,et al.  A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES , 2006 .

[42]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[43]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .

[44]  Stephen Childress Mechanics of swimming and flying: Preface , 1981 .

[45]  Jacques Rappaz,et al.  Multiscale algorithm with patches of finite elements , 2007 .

[46]  Emmanuel Maitre,et al.  Convergence Analysis of a Penalization Method for the Three-Dimensional Motion of a Rigid Body in an Incompressible Viscous Fluid , 2010, SIAM J. Numer. Anal..

[47]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[48]  M. J. Lighthill,et al.  On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers , 1952 .

[49]  Andrei Agrachev,et al.  On the Hausdorff volume in sub-Riemannian geometry , 2010, 1005.0540.

[50]  G. Cottet,et al.  EULERIAN FORMULATION AND LEVEL SET MODELS FOR INCOMPRESSIBLE FLUID-STRUCTURE INTERACTION , 2008 .

[51]  Yvon Maday,et al.  NUMERICAL ANALYSIS OF SOME DECOUPLING TECHNIQUES FOR THE APPROXIMATION OF THE UNSTEADY FLUID STRUCTURE INTERACTION , 2001 .

[52]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[53]  Alexei Lozinski,et al.  A fictitious domain approach for the Stokes problem based on the extended finite element method , 2013, 1303.6850.

[54]  Olivier Pironneau,et al.  Analysis of a Chimera method , 2001 .

[55]  E. Lauga,et al.  Efficiency optimization and symmetry-breaking in a model of ciliary locomotion , 2010, 1007.2101.

[56]  Emmanuel Trélat,et al.  Robust optimal stabilization of the Brockett integrator via a hybrid feedback , 2005, Math. Control. Signals Syst..

[57]  R. Temam,et al.  Problèmes mathématiques en plasticité , 1983 .

[58]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[59]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[60]  B. Maury Characteristics ALE Method for the Unsteady 3D Navier-Stokes Equations with a Free Surface , 1996 .

[61]  Keiji Kawachi,et al.  Regular Article: A Numerical Study of Undulatory Swimming , 1999 .

[62]  Endre Süli,et al.  Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations , 1988 .

[63]  Marius Tucsnak,et al.  Global Strong Solutions for the Two-Dimensional Motion of an Infinite Cylinder in a Viscous Fluid , 2004 .

[64]  Marius Tucsnak,et al.  A control theoretic approach to the swimming of microscopic organisms , 2007 .

[65]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[66]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[67]  Lucia Gastaldi,et al.  A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..

[68]  Roland Glowinski,et al.  Finite element approximation of multi-scale elliptic problems using patches of elements , 2005, Numerische Mathematik.

[69]  O. Pironneau,et al.  Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains , 1992 .

[70]  B. Maury,et al.  A PENALTY METHOD FOR THE SIMULATION OF FLUID - RIGID BODY INTERACTION , 2005 .

[71]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[72]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[73]  C. Surulescu ON THE STATIONARY MOTION OF A STOKES FLUID IN A THICK ELASTIC TUBE: A 3D/3D INTERACTION PROBLEM , 2006 .

[74]  D. Kessler Sharp interface limits of a thermodynamically consistent solutal phase field model , 2001 .

[75]  Pavel B. Bochev,et al.  On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..

[76]  Céline Grandmont,et al.  Existence for a Three-Dimensional Steady State Fluid-Structure Interaction Problem , 2002 .

[77]  O. Pironneau,et al.  Optimal swimming of flagellated micro-organisms , 1974 .

[78]  B. Gaveau,et al.  Hamilton–Jacobi theory and the heat kernel on Heisenberg groups , 2000 .

[79]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[80]  François Alouges,et al.  Biological Fluid Dynamics, Non-linear Partial Differential Equations , 2009, Encyclopedia of Complexity and Systems Science.

[81]  M. Triantafyllou,et al.  An Efficient Swimming Machine , 1995 .

[82]  Zhiyong Si Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier–Stokes problems , 2011, Numerical Algorithms.

[83]  A. Munnier,et al.  CONTROLLABILITY OF 3D LOW REYNOLDS NUMBER SWIMMERS , 2014 .