Analyse et approximation numérique de systèmes d'interaction fluide-structure et de modèles de champ-de-phase
暂无分享,去创建一个
[1] C. M. Elliott,et al. Global Existence and Stability of Solutions to the Phase Field Equations , 1990 .
[2] W. Wall,et al. An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .
[3] O. Pironneau. On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .
[4] Max D. Gunzburger,et al. Navier-Stokes equations for incompressible flows: Finite-element methods , 1996 .
[5] M. Tucsnak,et al. Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid , 2002 .
[6] Suresh P. Sethi,et al. A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..
[7] Gianluca Iaccarino,et al. IMMERSED BOUNDARY METHODS , 2005 .
[8] Mathieu Coquerelle,et al. ARTICLE IN PRESS Available online at www.sciencedirect.com Journal of Computational Physics xxx (2008) xxx–xxx , 2022 .
[9] Céline Grandmont,et al. Existence et unicité de solutions d'un problème de couplage fluide-structure bidimensionnel stationnaire , 1998 .
[10] C. Grandmont,et al. Existence for an Unsteady Fluid-Structure Interaction Problem , 2000 .
[11] Stéphane Flotron. Simulations numériques de phénomènes MHD-thermiques avec interface libre dans l"électrolyse de l"aluminium , 2013 .
[12] A. Bloch,et al. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[13] Charbel Farhat,et al. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .
[14] S. McCormick,et al. The fast adaptive composite grid (FAC) method for elliptic equation , 1986 .
[15] Takéo Takahashi,et al. Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain , 2003, Advances in Differential Equations.
[16] Olivier Pironneau. Finite Element Characteristic Methods Requiring no Quadrature , 2010, J. Sci. Comput..
[17] L. Heltai,et al. Numerical Strategies for Stroke Optimization of Axisymmetric Microswimmers , 2009, 0906.4502.
[18] G. Caginalp. An analysis of a phase field model of a free boundary , 1986 .
[19] L. Hou,et al. ANALYSIS OF A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM , 2003 .
[20] Alexandre Caboussat,et al. Numerical simulation of two-phase flow with interface tracking by adaptive Eulerian grid subdivision , 2012, Math. Comput. Model..
[21] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 2014 .
[22] G. Taylor. Analysis of the swimming of microscopic organisms , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[23] Srinivasan Natesan,et al. Arbitrary Lagrangian–Eulerian method for Navier–Stokes equations with moving boundaries , 2004 .
[24] Williams,et al. Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional navier-stokes equations and Newton's laws of motion , 1998, The Journal of experimental biology.
[25] Qiang Du,et al. Semidiscrete Finite Element Approximations of a Linear Fluid-Structure Interaction Problem , 2004, SIAM J. Numer. Anal..
[26] Yvon Maday,et al. A high-order characteristics/finite element method for the incompressible Navier-Stokes equations , 1997 .
[27] Jean-Pierre Raymond,et al. Null controllability in a fluid–solid structure model☆ , 2010 .
[28] François Alouges,et al. Optimal Strokes for Low Reynolds Number Swimmers: An Example , 2008, J. Nonlinear Sci..
[29] Bertrand Maury,et al. Fluid-particle flow: a symmetric formulation , 1997 .
[30] Bertrand Maury. Numerical Analysis of a Finite Element/Volume Penalty Method , 2009, SIAM J. Numer. Anal..
[31] B. Desjardins,et al. On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models , 1999 .
[32] Michel Visonneau,et al. Numerical methods for RANSE simulations of a self-propelled fish-like body , 2005 .
[33] E. Purcell. Life at Low Reynolds Number , 2008 .
[34] F. Wilczek,et al. Efficiencies of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.
[35] Jean-Pierre Raymond,et al. Feedback Stabilization of a Fluid-Structure Model , 2010, SIAM J. Control. Optim..
[36] R. Glowinski,et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .
[37] J. A. Sparenberg. Survey of the mathematical theory of fish locomotion , 2002 .
[38] Max Gunzburger,et al. Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions , 2000 .
[39] S. F. McCormick,et al. Unigrid for Multigrid Simulation , 1983 .
[40] Weak solutions to a phase-field model with non-constant thermal conductivity , 1997 .
[41] G. Cottet,et al. A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES , 2006 .
[42] O. Pironneau. On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.
[43] Jacques Periaux,et al. A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .
[44] Stephen Childress. Mechanics of swimming and flying: Preface , 1981 .
[45] Jacques Rappaz,et al. Multiscale algorithm with patches of finite elements , 2007 .
[46] Emmanuel Maitre,et al. Convergence Analysis of a Penalization Method for the Three-Dimensional Motion of a Rigid Body in an Incompressible Viscous Fluid , 2010, SIAM J. Numer. Anal..
[47] J. Happel,et al. Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .
[48] M. J. Lighthill,et al. On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers , 1952 .
[49] Andrei Agrachev,et al. On the Hausdorff volume in sub-Riemannian geometry , 2010, 1005.0540.
[50] G. Cottet,et al. EULERIAN FORMULATION AND LEVEL SET MODELS FOR INCOMPRESSIBLE FLUID-STRUCTURE INTERACTION , 2008 .
[51] Yvon Maday,et al. NUMERICAL ANALYSIS OF SOME DECOUPLING TECHNIQUES FOR THE APPROXIMATION OF THE UNSTEADY FLUID STRUCTURE INTERACTION , 2001 .
[52] O. Pironneau. On optimum design in fluid mechanics , 1974 .
[53] Alexei Lozinski,et al. A fictitious domain approach for the Stokes problem based on the extended finite element method , 2013, 1303.6850.
[54] Olivier Pironneau,et al. Analysis of a Chimera method , 2001 .
[55] E. Lauga,et al. Efficiency optimization and symmetry-breaking in a model of ciliary locomotion , 2010, 1007.2101.
[56] Emmanuel Trélat,et al. Robust optimal stabilization of the Brockett integrator via a hybrid feedback , 2005, Math. Control. Signals Syst..
[57] R. Temam,et al. Problèmes mathématiques en plasticité , 1983 .
[58] Fabio Nobile,et al. A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .
[59] Philippe Angot,et al. A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.
[60] B. Maury. Characteristics ALE Method for the Unsteady 3D Navier-Stokes Equations with a Free Surface , 1996 .
[61] Keiji Kawachi,et al. Regular Article: A Numerical Study of Undulatory Swimming , 1999 .
[62] Endre Süli,et al. Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations , 1988 .
[63] Marius Tucsnak,et al. Global Strong Solutions for the Two-Dimensional Motion of an Infinite Cylinder in a Viscous Fluid , 2004 .
[64] Marius Tucsnak,et al. A control theoretic approach to the swimming of microscopic organisms , 2007 .
[65] R. Brockett. Control Theory and Singular Riemannian Geometry , 1982 .
[66] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[67] Lucia Gastaldi,et al. A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..
[68] Roland Glowinski,et al. Finite element approximation of multi-scale elliptic problems using patches of elements , 2005, Numerische Mathematik.
[69] O. Pironneau,et al. Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains , 1992 .
[70] B. Maury,et al. A PENALTY METHOD FOR THE SIMULATION OF FLUID - RIGID BODY INTERACTION , 2005 .
[71] T. Powers,et al. The hydrodynamics of swimming microorganisms , 2008, 0812.2887.
[72] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[73] C. Surulescu. ON THE STATIONARY MOTION OF A STOKES FLUID IN A THICK ELASTIC TUBE: A 3D/3D INTERACTION PROBLEM , 2006 .
[74] D. Kessler. Sharp interface limits of a thermodynamically consistent solutal phase field model , 2001 .
[75] Pavel B. Bochev,et al. On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..
[76] Céline Grandmont,et al. Existence for a Three-Dimensional Steady State Fluid-Structure Interaction Problem , 2002 .
[77] O. Pironneau,et al. Optimal swimming of flagellated micro-organisms , 1974 .
[78] B. Gaveau,et al. Hamilton–Jacobi theory and the heat kernel on Heisenberg groups , 2000 .
[79] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[80] François Alouges,et al. Biological Fluid Dynamics, Non-linear Partial Differential Equations , 2009, Encyclopedia of Complexity and Systems Science.
[81] M. Triantafyllou,et al. An Efficient Swimming Machine , 1995 .
[82] Zhiyong Si. Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier–Stokes problems , 2011, Numerical Algorithms.
[83] A. Munnier,et al. CONTROLLABILITY OF 3D LOW REYNOLDS NUMBER SWIMMERS , 2014 .