Structural basis of transcription elongation.

[1]  P. Cramer,et al.  A Movie of RNA Polymerase II Transcription , 2012, Cell.

[2]  D. Gotte,et al.  Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. , 2012, Molecular cell.

[3]  F. Werner A Nexus for Gene Expression—Molecular Mechanisms of Spt5 and NusG in the Three Domains of Life , 2012, Journal of molecular biology.

[4]  D. Vassylyev,et al.  The binding site and mechanism of the RNA polymerase inhibitor tagetitoxin: An issue open to debate , 2012, Transcription.

[5]  E. Nudler,et al.  Response to Klyuyev and Vassylyev: On the mechanism of tagetitoxin inhibition of transcription , 2012, Transcription.

[6]  Patrick Cramer,et al.  Review Conservation between the Rna Polymerase I, Ii, and Iii Transcription Initiation Machineries , 2022 .

[7]  Xuhui Huang,et al.  Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. , 2012, Journal of the American Chemical Society.

[8]  Patrick Cramer,et al.  The Spt5 C-Terminal Region Recruits Yeast 3′ RNA Cleavage Factor I , 2012, Molecular and Cellular Biology.

[9]  R. Weinzierl The Bridge Helix of RNA Polymerase Acts as a Central Nanomechanical Switchboard for Coordinating Catalysis and Substrate Movement , 2012, Archaea.

[10]  S. Sainsbury,et al.  Structural basis of initial RNA polymerase II transcription , 2011, The EMBO journal.

[11]  Timothy Cardozo,et al.  Tagetitoxin Inhibits RNA Polymerase through Trapping of the Trigger Loop* , 2011, The Journal of Biological Chemistry.

[12]  R. Landick,et al.  RNA transcript 3'-proximal sequence affects translocation bias of RNA polymerase. , 2011, Biochemistry.

[13]  C. Pikaard,et al.  Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing , 2011, Nature Reviews Molecular Cell Biology.

[14]  R. Landick,et al.  The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. , 2011, Molecular cell.

[15]  B. Coulombe,et al.  Interaction of RNA Polymerase II Fork Loop 2 with Downstream Non-template DNA Regulates Transcription Elongation* , 2011, The Journal of Biological Chemistry.

[16]  Scott R. Kennedy,et al.  Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription , 2011, Proceedings of the National Academy of Sciences.

[17]  P. Cramer,et al.  Structural basis of RNA polymerase II backtracking, arrest and reactivation , 2011, Nature.

[18]  Patrick Cramer,et al.  Architecture of the RNA polymerase–Spt4/5 complex and basis of universal transcription processivity , 2011, The EMBO journal.

[19]  D. Brégeon,et al.  Transcriptional mutagenesis: causes and involvement in tumour development , 2011, Nature Reviews Cancer.

[20]  S. Jackson,et al.  Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. , 2011, Genes & development.

[21]  F. Werner,et al.  Evolution of multisubunit RNA polymerases in the three domains of life , 2011, Nature Reviews Microbiology.

[22]  Yulia Yuzenkova,et al.  Controlled interplay between trigger loop and Gre factor in the RNA polymerase active centre , 2011, Nucleic acids research.

[23]  F. Werner,et al.  Cycling through transcription with the RNA polymerase F/E (RPB4/7) complex: structure, function and evolution of archaeal RNA polymerase. , 2011, Research in microbiology.

[24]  K. Murakami,et al.  RNA polymerase and transcription elongation factor Spt4/5 complex structure , 2010, Proceedings of the National Academy of Sciences.

[25]  Masaki Yamamoto,et al.  Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein , 2010, Nature.

[26]  Michael Feig,et al.  RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation. , 2010, Biophysical journal.

[27]  Francisco J. Asturias,et al.  Complete Structural Model of Escherichia coli RNA Polymerase from a Hybrid Approach , 2010, PLoS biology.

[28]  V. Lamour,et al.  Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction , 2010, Nucleic acids research.

[29]  I. Artsimovitch,et al.  Functional analysis of Thermus thermophilus transcription factor NusG , 2010, Nucleic acids research.

[30]  L. Selth,et al.  Transcript Elongation by RNA Polymerase II. , 2010, Annual review of biochemistry.

[31]  S. Block,et al.  E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. , 2010, Journal of molecular biology.

[32]  Zachary F Burton,et al.  Translocation by multi-subunit RNA polymerases. , 2010, Biochimica et biophysica acta.

[33]  P. Thuriaux,et al.  Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases , 2010, Nucleic acids research.

[34]  Andrew C. R. Martin,et al.  Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif , 2010, Nucleic acids research.

[35]  D. Bushnell,et al.  Structure of an RNA Polymerase II–TFIIB Complex and the Transcription Initiation Mechanism , 2010, Science.

[36]  F. Werner,et al.  Molecular mechanisms of RNA polymerase—the F/E (RPB4/7) complex is required for high processivity in vitro , 2009, Nucleic acids research.

[37]  Robert Landick,et al.  Role of the RNA polymerase trigger loop in catalysis and pausing , 2010, Nature Structural &Molecular Biology.

[38]  D. Vassylyev Elongation by RNA polymerase: a race through roadblocks. , 2009, Current opinion in structural biology.

[39]  P. Cramer,et al.  RNA polymerase II–TFIIB structure and mechanism of transcription initiation , 2009, Nature.

[40]  Patrick Cramer,et al.  RNA polymerase fidelity and transcriptional proofreading. , 2009, Current opinion in structural biology.

[41]  P. Cramer,et al.  Molecular Basis of Transcriptional Mutagenesis at 8-Oxoguanine* , 2009, The Journal of Biological Chemistry.

[42]  R. Landick,et al.  Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. , 2009, Journal of molecular biology.

[43]  Jens Michaelis,et al.  Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex , 2009, Nucleic acids research.

[44]  Steven Hahn,et al.  Phosphorylation of the Transcription Elongation Factor Spt5 by Yeast Bur1 Kinase Stimulates Recruitment of the PAF Complex , 2009, Molecular and Cellular Biology.

[45]  P. Cramer,et al.  Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. , 2009, Molecular cell.

[46]  Julio O. Ortiz,et al.  A movie of the RNA polymerase nucleotide addition cycle. , 2009, Current opinion in structural biology.

[47]  M. Levitt,et al.  Structural Basis of Transcription: Backtracked RNA Polymerase II at 3.4 Angstrom Resolution , 2009, Science.

[48]  D. Stuart,et al.  Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure , 2009, PLoS biology.

[49]  Karen Zhou,et al.  Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5 , 2009, Proceedings of the National Academy of Sciences.

[50]  R. Landick Functional divergence in the growing family of RNA polymerases. , 2009, Structure.

[51]  L. Paša-Tolić,et al.  Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. , 2009, Molecular cell.

[52]  R. Landick,et al.  Functional specialization of transcription elongation factors , 2009, The EMBO journal.

[53]  Patrick Cramer,et al.  Structure–function studies of the RNA polymerase II elongation complex , 2009, Acta crystallographica. Section D, Biological crystallography.

[54]  E. Nudler,et al.  Transcription inactivation through local refolding of the RNA polymerase structure , 2009, Nature.

[55]  K. Murakami,et al.  Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. , 2008, Molecular cell.

[56]  P. Hanawalt,et al.  Transcription-coupled DNA repair: two decades of progress and surprises , 2008, Nature Reviews Molecular Cell Biology.

[57]  Scott Bailey,et al.  The Structure of a Transcribing T7 RNA Polymerase in Transition from Initiation to Elongation , 2008, Science.

[58]  P. Cramer,et al.  Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation , 2008, Nature Structural &Molecular Biology.

[59]  K. Murakami Faculty Opinions recommendation of Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. , 2008 .

[60]  Craig D. Kaplan,et al.  The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. , 2008, Molecular cell.

[61]  J. Strathern,et al.  Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. , 2008, Molecular cell.

[62]  P. Cramer,et al.  Structure of eukaryotic RNA polymerases. , 2008, Annual review of biophysics.

[63]  Evgeny Nudler,et al.  RNA polymerase: the vehicle of transcription. , 2008, Trends in microbiology.

[64]  Akira Hirata,et al.  The X-ray crystal structure of RNA polymerase from Archaea , 2008, Nature.

[65]  Jens Michaelis,et al.  Single-molecule tracking of mRNA exiting from RNA polymerase II , 2008, Proceedings of the National Academy of Sciences.

[66]  P. Cramer,et al.  Structure–function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement , 2007, Nucleic acids research.

[67]  P. Cramer,et al.  Molecular basis of RNA-dependent RNA polymerase II activity , 2007, Nature.

[68]  P. Cramer,et al.  Mechanism of transcriptional stalling at cisplatin-damaged DNA , 2007, Nature Structural &Molecular Biology.

[69]  D. Vassylyev,et al.  The carboxy‐terminal coiled‐coil of the RNA polymerase β′‐subunit is the main binding site for Gre factors , 2007, EMBO reports.

[70]  Robert Landick,et al.  A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. , 2007, Molecular cell.

[71]  Tahir H. Tahirov,et al.  Structural basis for transcription elongation by bacterial RNA polymerase , 2007, Nature.

[72]  P. Cramer Gene transcription: Extending the message , 2007, Nature.

[73]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[74]  C. Carles,et al.  Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription , 2007, Proceedings of the National Academy of Sciences.

[75]  P. Cramer,et al.  DNA photodamage recognition by RNA polymerase II , 2007, FEBS letters.

[76]  J. Svejstrup Contending with transcriptional arrest during RNAPII transcript elongation. , 2007, Trends in biochemical sciences.

[77]  P. Cramer,et al.  CPD Damage Recognition by Transcribing RNA Polymerase II , 2007, Science.

[78]  A. Sarasin,et al.  New insights for understanding the transcription-coupled repair pathway. , 2007, DNA Repair.

[79]  Irina Artsimovitch,et al.  Structural basis for substrate loading in bacterial RNA polymerase , 2007, Nature.

[80]  Craig D. Kaplan,et al.  Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis , 2006, Cell.

[81]  R. Landick The regulatory roles and mechanism of transcriptional pausing. , 2006, Biochemical Society transactions.

[82]  David I Stuart,et al.  The Structure of an RNAi Polymerase Links RNA Silencing and Transcription , 2006, PLoS biology.

[83]  R. Conaway,et al.  RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors , 2006, The EMBO journal.

[84]  K. Severinov,et al.  The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid. , 2006, Journal of molecular biology.

[85]  R. Landick,et al.  The role of the lid element in transcription by E. coli RNA polymerase. , 2006, Journal of molecular biology.

[86]  John T. Lis,et al.  Breaking barriers to transcription elongation , 2006, Nature Reviews Molecular Cell Biology.

[87]  Yulia Yuzenkova,et al.  Transcript-Assisted Transcriptional Proofreading , 2006, Science.

[88]  Steven M. Block,et al.  Sequence-Resolved Detection of Pausing by Single RNA Polymerase Molecules , 2006, Cell.

[89]  B. Shafer,et al.  Mutations in the Saccharomyces cerevisiae RPB1 Gene Conferring Hypersensitivity to 6-Azauracil , 2006, Genetics.

[90]  B. Coulombe,et al.  Structural Perspective on Mutations Affecting the Function of Multisubunit RNA Polymerases , 2006, Microbiology and Molecular Biology Reviews.

[91]  N. Savery,et al.  Structural Basis for Bacterial Transcription-Coupled DNA Repair , 2006, Cell.

[92]  P. Doetsch,et al.  RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? , 2006, Chemical reviews.

[93]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[94]  Naohiro Matsugaki,et al.  Structural basis for transcription inhibition by tagetitoxin , 2005, Nature Structural &Molecular Biology.

[95]  T. Tahirov,et al.  Structural basis of transcription inhibition by antibiotic streptolydigin. , 2005, Molecular cell.

[96]  A. D. Clark,et al.  Inhibition of Bacterial RNA Polymerase by Streptolydigin: Stabilization of a Straight-Bridge-Helix Active-Center Conformation , 2005, Cell.

[97]  Naohiro Matsugaki,et al.  Allosteric Modulation of the RNA Polymerase Catalytic Reaction Is an Essential Component of Transcription Control by Rifamycins , 2005, Cell.

[98]  Mahadeb Pal,et al.  The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. , 2005, Molecular cell.

[99]  Dong Wang,et al.  Cellular processing of platinum anticancer drugs , 2005, Nature Reviews Drug Discovery.

[100]  Vasily M Studitsky,et al.  Nature of the nucleosomal barrier to RNA polymerase II. , 2005, Molecular cell.

[101]  Anton Meinhart,et al.  Structures of Complete RNA Polymerase II and Its Subcomplex, Rpb4/7* , 2005, Journal of Biological Chemistry.

[102]  K. Severinov,et al.  Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase , 2005, The EMBO journal.

[103]  Jennifer L. Knight,et al.  Distance-restrained docking of rifampicin and rifamycin SV to RNA polymerase using systematic FRET measurements: developing benchmarks of model quality and reliability. , 2005, Biophysical journal.

[104]  Arkady Mustaev,et al.  A Ratchet Mechanism of Transcription Elongation and Its Control , 2005, Cell.

[105]  P. Cramer,et al.  Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. , 2004, Molecular cell.

[106]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[107]  D. Vassylyev,et al.  Discrimination against Deoxyribonucleotide Substrates by Bacterial RNA Polymerase* , 2004, Journal of Biological Chemistry.

[108]  H. Handa,et al.  Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. , 2004, Biochemical and biophysical research communications.

[109]  Y. Nedialkov,et al.  α-Amanitin Blocks Translocation by Human RNA Polymerase II* , 2004, Journal of Biological Chemistry.

[110]  D. Bushnell,et al.  Structural Basis of Transcription: Separation of RNA from DNA by RNA Polymerase II , 2004, Science.

[111]  Shigeyuki Yokoyama,et al.  Structural Basis for Substrate Selection by T7 RNA Polymerase , 2004, Cell.

[112]  Thomas A Steitz,et al.  The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase , 2004, Cell.

[113]  Y. Nedialkov,et al.  Alpha-amanitin blocks translocation by human RNA polymerase II. , 2004, The Journal of biological chemistry.

[114]  P. Hanawalt,et al.  Behavior of T7 RNA Polymerase and Mammalian RNA Polymerase II at Site-specific Cisplatin Adducts in the Template DNA* , 2003, Journal of Biological Chemistry.

[115]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[116]  William J. Rice,et al.  Structure and Function of the Transcription Elongation Factor GreB Bound to Bacterial RNA Polymerase , 2003, Cell.

[117]  Hiroshi Handa,et al.  NTP-driven Translocation by Human RNA Polymerase II* , 2003, The Journal of Biological Chemistry.

[118]  P. Cramer,et al.  Architecture of initiation-competent 12-subunit RNA polymerase II , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Roger D Kornberg,et al.  Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: Implications for the initiation of transcription , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Arkady Mustaev,et al.  Unified two‐metal mechanism of RNA synthesis and degradation by RNA polymerase , 2003, The EMBO journal.

[121]  JohnB . Taylor,et al.  New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions. , 2002, Mutation research.

[122]  S. Yokoyama,et al.  Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution , 2002, Nature.

[123]  T. Steitz,et al.  Structural Basis for the Transition from Initiation to Elongation Transcription in T7 RNA Polymerase , 2002, Science.

[124]  C. Kane,et al.  Promoting elongation with transcript cleavage stimulatory factors. , 2002, Biochimica et biophysica acta.

[125]  V. Markovtsov,et al.  Swing-gate model of nucleotide entry into the RNA polymerase active center. , 2002, Molecular cell.

[126]  Francisco J Asturias,et al.  Structure of yeast RNA polymerase II in solution: implications for enzyme regulation and interaction with promoter DNA. , 2002, Structure.

[127]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[128]  M. Dizdaroglu,et al.  Free radical-induced damage to DNA: mechanisms and measurement. , 2002, Free radical biology & medicine.

[129]  R. Landick,et al.  The Transcriptional Regulator RfaH Stimulates RNA Chain Synthesis after Recruitment to Elongation Complexes by the Exposed Nontemplate DNA Strand , 2002, Cell.

[130]  S. Squazzo,et al.  The Paf1 complex physically and functionally associates with transcription elongation factors in vivo , 2002, The EMBO journal.

[131]  K. Severinov,et al.  Structure‐based analysis of RNA polymerase function: the largest subunit's rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA–DNA hybrid length , 2002, The EMBO journal.

[132]  Patrick Cramer,et al.  Structural basis of transcription: α-Amanitin–RNA polymerase II cocrystal at 2.8 Å resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Patrick Cramer,et al.  Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[134]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[135]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[136]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[137]  C. Arrowsmith,et al.  Structure of a Conserved Domain Common to the Transcription Factors TFIIS, Elongin A, and CRSP70* , 2000, The Journal of Biological Chemistry.

[138]  E. Geiduschek,et al.  The orientation of DNA in an archaeal transcription initiation complex , 2000, Nature Structural Biology.

[139]  S. Darst,et al.  A Structural Model of Transcription Elongation , 2000 .

[140]  Younggyu Kim,et al.  Structural Organization of the RNA Polymerase-Promoter Open Complex , 2000, Cell.

[141]  P. Cramer,et al.  Architecture of RNA polymerase II and implications for the transcription mechanism. , 2000, Science.

[142]  M. Kashlev,et al.  The 8-Nucleotide-long RNA:DNA Hybrid Is a Primary Stability Determinant of the RNA Polymerase II Elongation Complex* , 2000, The Journal of Biological Chemistry.

[143]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[144]  Grant J. Jensen,et al.  Yeast RNA Polymerase II at 5 Å Resolution , 1999, Cell.

[145]  G. Jensen,et al.  Electron Crystal Structure of an RNA Polymerase II Transcription Elongation Complex , 1999, Cell.

[146]  E. Nudler Transcription elongation: structural basis and mechanisms. , 1999, Journal of molecular biology.

[147]  E. Nudler,et al.  Spatial organization of transcription elongation complex in Escherichia coli. , 1998, Science.

[148]  D. K. Hawley,et al.  Transcriptional Fidelity and Proofreading by RNA Polymerase II , 1998, Cell.

[149]  G. Jensen,et al.  Structure of wild‐type yeast RNA polymerase II and location of Rpb4 and Rpb7 , 1998, The EMBO journal.

[150]  C. Arrowsmith,et al.  I: NMR STRUCTURAL ANALYSIS OF THE MINIMAL TRANSCRIPTIONALLY ACTIVE REGION* , 1998 .

[151]  R. Kornberg,et al.  Two conformations of RNA polymerase II revealed by electron crystallography. , 1997, Journal of molecular biology.

[152]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[153]  M. Kashlev,et al.  Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3' end of the RNA intact and extruded. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[154]  B. Bartholomew,et al.  Elongation Factor SII Contacts the 3′-End of RNA in the RNA Polymerase II Elongation Complex* , 1996, The Journal of Biological Chemistry.

[155]  V. Markovtsov,et al.  Transcription Processivity: Protein-DNA Interactions Holding Together the Elongation Complex , 1996, Science.

[156]  R. Conaway,et al.  The RNA polymerase II elongation complex , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[157]  S. Darst,et al.  Crystal structure of the GreA transcript cleavage factor from Escherichia coli , 1995, Nature.

[158]  T. Steitz,et al.  A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. , 1994, Science.

[159]  M. Rudd,et al.  The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[160]  C. Bustamante,et al.  Evidence of DNA bending in transcription complexes imaged by scanning force microscopy. , 1993, Science.

[161]  Z. Wang,et al.  Identification of a single-stranded DNA-binding protein that interacts with an S1 nuclease-sensitive region in the platelet-derived growth factor A-chain gene promoter. , 1993, The Journal of biological chemistry.

[162]  T. Lindahl Instability and decay of the primary structure of DNA , 1993, Nature.

[163]  D. Luse,et al.  The RNA polymerase II ternary complex cleaves the nascent transcript in a 3'----5' direction in the presence of elongation factor SII. , 1992, Genes & development.

[164]  Seth A. Darst,et al.  Three-dimensional structure of yeast RNA polymerase II at 16 Å resolution , 1991, Cell.