Deceptive jamming for tracked vehicles based on micro-Doppler signatures

As tracked vehicles play significant roles in a battlefield, effective jamming measures are necessary to protect them from being perceived by a hostile radar. Moving tracked vehicles usually exhibit strong Doppler and micro-Doppler signatures. Therefore, the jamming signal should include micro-Doppler modulation generated by metallic caterpillars for successful deceptive jamming. Based on detailed analysis of kinetic characteristics of tracked vehicles, this study proposes a novel deceptive jamming method for tracked vehicles against a continuous-wave ground surveillance radar. To guarantee the fidelity of the deceptive jamming, this method performs both translational modulation for rigid parts and micro-Doppler modulation for the caterpillars. Moreover, the translational modulation function is generated partly off-line to improve the computational efficiency. To evaluate the performance of the proposed approach quantitatively, evaluation indices, such as human visual system and wavelets weighted mean square error, are designed. Simulation results are presented to verify the validity of the proposed method.