A discrete‐time indirect adaptive multiple‐model actuator failure compensation scheme

Summary A new discrete-time actuator failure compensation control scheme is developed, using a multiple-model adaptive control approach which has the capacity to achieve faster and more accurate compensation of failure uncertainties. An individual adaptive system, for each possible failure pattern in a failure pattern set of interest for compensation, is designed using an indirect model reference adaptive control scheme for actuator failure compensation. A multiple-model control switching mechanism for discrete-time systems is set up by finding the minimal performance index to select the most appropriate control law. The performance indices are based on the adaptive estimation errors of individual parameterized systems with actuator failures. Simulation results from an aircraft flight control system example are presented to show the desired closed-loop system stability and tracking performance despite the presence of uncertain actuator failures. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  Anthony J. Calise,et al.  Development of a Reconfigurable Flight Control Law for Tailless Aircraft , 2001 .

[2]  Jin Jiang,et al.  Fault-tolerant control against stuck actuator faults , 2005 .

[3]  Gang Tao,et al.  Adaptive Methods for Flight Control Diagnostics , 2008 .

[4]  R. Mehra,et al.  Multiple-Model Adaptive Flight Control Scheme for Accommodation of Actuator Failures , 2002 .

[5]  Jovan D. Boskovic,et al.  A multiple model predictive scheme for fault-tolerant flight control design , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[6]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[7]  E. Lavretsky,et al.  Adaptation-based reconfiguration in the presence of actuator failures and saturation , 2005, Proceedings of the 2005, American Control Conference, 2005..

[8]  Qinglei Hu,et al.  Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. , 2010, ISA transactions.

[9]  Giorgio Battistelli,et al.  Multi-model unfalsified adaptive switching supervisory control , 2010, Autom..

[10]  Antonio M. Pascoal,et al.  Robust multiple model adaptive control (RMMAC): a case study , 2007 .

[11]  Nhan T. Nguyen,et al.  Multiple-Model Adaptive Fault-Tolerant Control of a Planetary Lander , 2009 .

[12]  K. Narendra,et al.  Discrete-time adaptive control using multiple models , 2011, Proceedings of the 2011 American Control Conference.

[13]  Thomas S. Brinsmead,et al.  Multiple model adaptive control. Part 2: switching , 2001 .

[14]  Kumpati S. Narendra,et al.  New Concepts in Adaptive Control Using Multiple Models , 2012, IEEE Transactions on Automatic Control.

[15]  Brian D. O. Anderson,et al.  A Combined Multiple Model Adaptive Control Scheme and Its Application to Nonlinear Systems With Nonlinear Parameterization , 2012, IEEE Transactions on Automatic Control.

[16]  Wei Wang,et al.  Adaptive compensation for infinite number of actuator failures or faults , 2011, Autom..

[17]  Yingwei Zhang,et al.  Adaptive actuator fault compensation for linear systems with matching and unmatching uncertainties , 2009 .

[18]  Kumpati S. Narendra,et al.  Adaptive control of discrete-time systems using multiple models , 2000, IEEE Trans. Autom. Control..

[19]  Heng Wang,et al.  Fault detection for output feedback control systems with actuator stuck faults: A steady‐state‐based approach , 2010 .

[20]  J. A. Jackson,et al.  Multiple Model-Based Adaptive Fault-Tolerant Control of Delta Clipper Experimental (DC-X) Planetary Lander , 2008 .

[21]  Li Xiaoli,et al.  Multiple model iterative learning control , 2010 .