Dual wavelength lasers

Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 μm and Er at 2.9 μm) as well as Nd:YAG (1.06 and 1.3 μm) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.

[1]  T. Sumiyoshi,et al.  Dual-wavelength continuous-wave cascade oscillation at 3 and 2 mum with a holmium-doped fluoride-glass fiber laser. , 1998, Optics letters.

[2]  V. Lupei,et al.  On the dynamics of population inversion for 3 mu m Er/sup 3+/ lasers , 1993 .

[3]  Laser Oscillations at 0.918, 1.057, and 1.401 Microns in Nd3+‐Doped Borate Glasses , 1964 .

[4]  Yung-Fu Chen,et al.  Diode-pumped Q-switched Nd : YVO4 yellow laser with intracavity sum-frequency mixing , 2002 .

[5]  B. H. T. Chai,et al.  Lamp‐pumped laser performance of Nd3+:Sr5(PO4)3F operating both separately and simultaneously at 1.059 and 1.328 μm , 1996 .

[6]  Bruce H. T. Chai,et al.  Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature , 1994 .

[7]  J. H. Huang,et al.  Cavity configuration for a Q-switched simultaneous dual-wavelength Nd:YAlO 3 laser with the characteristic of polarization-dependent emission cross section , 2003 .

[8]  A. Bleckmann,et al.  Stimulated emission and laser action of Pr3+-doped YA1O3 , 1994 .

[9]  R. Smith New room temperature CW laser transitions in YAlG:Nd , 1968 .

[10]  M. Robinson,et al.  THERMAL SWITCHING OF LASER EMISSION OF Er3+ AT 2.69 μ AND Tm3+ AT 1.86 μ IN MIXED CRYSTALS OF CaF2:ErF3:TmF3 , 1967 .

[11]  J. Holloway,et al.  Multiwavelength output from a Nd:YAG /Cr:LiSAF hybrid laser. , 1999, Applied optics.

[12]  Guoren Zhang,et al.  Computational model of Q-switch Nd:YAlO3 dual-wavelength laser , 1998 .

[13]  Milan R. Kokta,et al.  Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12 , 1987 .

[14]  Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3 , 2003 .

[15]  Norman P. Barnes,et al.  The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF , 2000 .

[16]  Brian M. Walsh,et al.  Review of Tm and Ho materials; spectroscopy and lasers , 2009 .

[17]  K. Murray,et al.  Cr:Er:Tm:Ho:yttrium aluminum garnet laser exhibiting dual wavelength lasing at 2.1 and 2.9 μm: Spectroscopy and laser performance , 2002 .

[18]  J. Marling,et al.  1.05-1.44 µm tunability and performance of the CW Nd3+:YAG laser , 1978, IEEE Journal of Quantum Electronics.

[19]  Yung-Fu Chen,et al.  cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser , 2000 .

[20]  R. Moncorgé,et al.  Er sup 3+ r arrow Tm sup 3+ energy transfer in YLiF sub 4 (YLF) , 1990 .

[21]  Pingxue Li,et al.  Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling , 2004 .

[22]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[23]  R. Wu,et al.  1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAIO(3) pulsed laser. , 1993, Applied optics.

[24]  C. Bethea,et al.  Megawatt power at 1.318 µ in Nd 3+ :YAG and simultaneous oscillation at both 1.06 and 1.318 µ , 1973 .

[25]  H P Weber,et al.  Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 microm. , 1997, Optics letters.

[26]  M. Malinowski,et al.  Simultaneous laser action at blue and orange wavelengths in YAG:Pr3+ , 1993 .

[27]  H. Shen,et al.  Simultaneous multiple wavelength laser action in various neodymium host crystals , 1991 .

[28]  Z. S. Liu,et al.  Guided-mode resonance Brewster filter. , 1998, Optics letters.

[29]  R. Balda,et al.  Study of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses. , 2009, Optics express.

[30]  F. Zhang,et al.  Energy transfer among rare earth ions induced by annealing process of TmEr codoped aluminum oxide thin films , 2009 .

[31]  S. Davey,et al.  Highly efficient and tunable operation of two colour Tm-doped fluoride fibre laser , 1992 .

[32]  Norman P. Barnes,et al.  On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence , 1997 .

[33]  C. Pedrini,et al.  Fluorescence dynamics in the codoped systems YLiF4(Er3+, Tm3+, Ho3+) after 800 nm excitation , 1990 .

[34]  Milan R. Kokta,et al.  Simulatneous multiple wavelength lasing of (Ho,Nd):Y3Al5Od212 , 1987 .

[35]  M. B. Danailov,et al.  Simultaneous multiwavelength operation of Nd:YAG laser , 1992 .

[37]  Norman P. Barnes,et al.  Dispersive Tuning and Performance of a Pulsed Nd:YAG Laser , 2003 .

[38]  Zhiyi Wei,et al.  Simultaneous dual-wavelength Q-switched Nd:YAG laser operating at 1.06 μm and 946 nm , 2006 .

[39]  L. Johnson,et al.  ENERGY TRANSFER FROM Er$sup 3+$ TO Tm$sup 3+$ AND Ho$sup 3+$ IONS IN CRYSTALS , 1964 .

[40]  P. Dao,et al.  Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system. , 1995, Applied optics.

[41]  L. Johnson,et al.  Energy Transfer Between Rare‐Earth Ions , 1966 .

[42]  H. Poignant,et al.  Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 mu m in thulium-doped fluorozirconate fibre , 1989 .

[43]  Hiroaki Yanagita,et al.  Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses , 1995 .

[44]  George A. Henderson,et al.  A computational model of a dual‐wavelength solid‐state laser , 1990 .

[45]  K. Petermann,et al.  Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4 , 2006 .

[46]  Steven T. Davey,et al.  Highly efficient CW cascade operation of 1.47 and 1.82 mu m transitions in Tm-doped fluoride fibre laser , 1992 .

[47]  Norman P. Barnes,et al.  A novel UV laser for lidar applications , 2007, SPIE Remote Sensing.

[48]  Petrin,et al.  Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass. , 1989, Physical review. B, Condensed matter.