Complexity and approximability of the k‐way vertex cut

In this article, we consider k-way vertex cut: the problem of finding a graph separator of a given size that decomposes the graph into the maximum number of components. Our main contribution is the derivation of an efficient polynomial-time approximation scheme for the problem on planar graphs. Also, we show that k-way vertex cut is polynomially solvable on graphs of bounded treewidth and fixed–parameter tractable on planar graphs with the size of the separator as the parameter. © 2013 Wiley Periodicals, Inc. NETWORKS, Vol. 63(2), 170–178 2014

[1]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[2]  Dániel Marx,et al.  Parameterized graph separation problems , 2004, Theor. Comput. Sci..

[3]  David R. Karger,et al.  A new approach to the minimum cut problem , 1996, JACM.

[4]  Michal Pilipczuk,et al.  On Multiway Cut Parameterized above Lower Bounds , 2011, IPEC.

[5]  Frédéric Roupin,et al.  Minimal multicut and maximal integer multiflow: A survey , 2005, Eur. J. Oper. Res..

[6]  Dániel Marx,et al.  Fixed-parameter tractability of multicut parameterized by the size of the cutset , 2010, STOC '11.

[7]  Bruce A. Reed,et al.  Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width , 2003, J. Algorithms.

[8]  Ken-ichi Kawarabayashi,et al.  The Minimum k-way Cut of Bounded Size is Fixed-Parameter Tractable , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[9]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[10]  Jianer Chen,et al.  An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, WADS.

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Mihalis Yannakakis,et al.  Multiway cuts in node weighted graphs , 2004, J. Algorithms.

[13]  Vijay V. Vazirani,et al.  Finding k Cuts within Twice the Optimal , 1995, SIAM J. Comput..

[14]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[15]  Mohammad Taghi Hajiaghayi,et al.  A note on the bounded fragmentation property and its applications in network reliability , 2003, Eur. J. Comb..

[16]  Michal Pilipczuk,et al.  Designing FPT Algorithms for Cut Problems Using Randomized Contractions , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[17]  Mingyu Xiao,et al.  Simple and Improved Parameterized Algorithms for Multiterminal Cuts , 2009, Theory of Computing Systems.

[18]  Subhash Khot,et al.  Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[19]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[20]  Xin He An Improved Algorithm for the Planar 3-Cut Problem , 1991, J. Algorithms.

[21]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[22]  Nicolas Bousquet,et al.  Multicut is FPT , 2010, STOC '11.

[23]  Marek Karpinski,et al.  Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems , 1999, J. Comput. Syst. Sci..

[24]  Vijay V. Vazirani,et al.  Finding k-cuts within twice the optimal , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[25]  Rolf Niedermeier,et al.  Complexity and exact algorithms for vertex multicut in interval and bounded treewidth graphs , 2008, Eur. J. Oper. Res..

[26]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[27]  Yuval Rabani,et al.  An improved approximation algorithm for multiway cut , 1998, STOC '98.

[28]  D. Hochbaum,et al.  An $O ( | V |^2 )$ Algorithm for the Planar 3-Cut Problem , 1985 .

[29]  Nagamochi Hiroshi,et al.  A Deterministic Algorithm for Finding All Minimum k-Way Cuts , 2005 .

[30]  Dorit S. Hochbaum,et al.  A Polynomial Algorithm for the k-cut Problem for Fixed k , 1994, Math. Oper. Res..

[31]  Michael R. Fellows,et al.  Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related Problems , 2003, CATS.

[32]  Mikkel Thorup,et al.  Minimum k-way cuts via deterministic greedy tree packing , 2008, STOC.

[33]  Mihalis Yannakakis,et al.  Primal-dual approximation algorithms for integral flow and multicut in trees , 1997, Algorithmica.