Simulating Relativistic Jet on the NKS-1P Supercomputer with Intel Broadwell Computing Nodes

This paper presents the results of modeling the interaction of a relativistic jet with an inhomogeneous galactic medium. To numerically solve the equations of special relativistic hydrodynamics, a new numerical method was developed combining the Godunov method, flow calculation by the Rusanov method, and piecewise linear representation of the solution. The numerical method was implemented in program code for supercomputer architectures with distributed memory using MPI. The results of studying the code performance on the Intel Broadwell computing nodes of the NKS-1P cluster located in the Siberian Supercomputer Center are presented.

[1]  Masaru Shibata,et al.  Magnetized hypermassive neutron-star collapse: a central engine for short gamma-ray bursts. , 2006, Physical review letters.

[2]  Luis Lehner,et al.  Magnetospheres of black hole systems in force-free plasma , 2010 .

[3]  R. Teyssier,et al.  Simulating gamma-ray binaries with a relativistic extension of RAMSES , 2013, 1309.7629.

[4]  V. S. Dhillon,et al.  A radio-pulsing white dwarf binary star , 2016, Nature.

[5]  Erik Schnetter,et al.  Simulation Factory: Taming application configuration and workflow on high-end resources , 2010, 2010 11th IEEE/ACM International Conference on Grid Computing.

[6]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[7]  Igor M. Kulikov,et al.  Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows , 2016, J. Comput. Phys..

[8]  M. Miller,et al.  The new frontier of gravitational waves , 2019, Nature.

[9]  Masaru Shibata,et al.  Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity , 2006, astro-ph/0605331.

[10]  S. S. Komissarov Observations of the Blandford–Znajek process and the magnetohydrodynamic Penrose process in computer simulations of black hole magnetospheres , 2005 .

[11]  Sergey A. Khoperskov,et al.  High Performance Computing of Magnetized Galactic Disks , 2018, Supercomput. Front. Innov..

[12]  Agnieszka Janiuk,et al.  Numerical Simulations of Black Hole Accretion Flows , 2018, Supercomput. Front. Innov..

[13]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[14]  C. Reynolds,et al.  HOW AGN JETS HEAT THE INTRACLUSTER MEDIUM—INSIGHTS FROM HYDRODYNAMIC SIMULATIONS , 2016, 1605.01725.

[15]  Steven L. Liebling,et al.  AMR, stability and higher accuracy , 2005, gr-qc/0510111.

[16]  Claus-Dieter Munz,et al.  xtroem-fv: a new code for computational astrophysics based on very high order finite-volume methods – II. Relativistic hydro- and magnetohydrodynamics , 2016 .

[17]  F. Guzm'an,et al.  CAFE-R: A Code That Solves the Special Relativistic Radiation Hydrodynamics Equations , 2019, The Astrophysical Journal Supplement Series.

[18]  S. K. Godunov,et al.  Experimental analysis of convergence of the numerical solution to a generalized solution in fluid dynamics , 2011 .

[19]  V. V. Ostapenko,et al.  On the Accuracy of the Discontinuous Galerkin Method in Calculation of Shock Waves , 2018 .

[20]  Olindo Zanotti,et al.  General relativistic radiation hydrodynamics of accretion flows – II. Treating stiff source terms and exploring physical limitations , 2012, 1206.6662.

[21]  Paul C. Duffell,et al.  TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH , 2011, 1104.3562.

[22]  C. Palenzuela,et al.  Dual Jets from Binary Black Holes , 2010, Science.

[23]  Igor Kulikov,et al.  A new code for the numerical simulation of relativistic flows on supercomputers by means of a low-dissipation scheme , 2020, Comput. Phys. Commun..

[24]  S. Komissarov,et al.  Simulations of the axisymmetric magnetospheres of neutron stars , 2006 .

[25]  Kohsuke Sumiyoshi,et al.  THREE-DIMENSIONAL BOLTZMANN HYDRO CODE FOR CORE COLLAPSE IN MASSIVE STARS. I. SPECIAL RELATIVISTIC TREATMENTS , 2014, 1407.5632.

[26]  John Shalf,et al.  The Cactus Framework and Toolkit: Design and Applications , 2002, VECPAR.

[27]  Christian D. Ott,et al.  A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes , 2009, 0912.2393.

[28]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[29]  S. S. Komissarov,et al.  Electrodynamics of black hole magnetospheres , 2004, astro-ph/0402403.

[30]  Peng Wang,et al.  Relativistic Hydrodynamic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement , 2008 .

[31]  E. Muller,et al.  GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.

[32]  Weiqun Zhang,et al.  RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.

[33]  Masaru Shibata,et al.  Collapse of magnetized hypermassive neutron stars in general relativity. , 2006 .

[34]  Oscar A. Reula,et al.  Robustness of the Blandford–Znajek mechanism , 2011, 1102.3663.

[35]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[36]  F. Timmes,et al.  The Accuracy, Consistency, and Speed of Five Equations of State for Stellar Hydrodynamics , 1999 .

[37]  Shoichi Yamada,et al.  JET PROPAGATIONS, BREAKOUTS, AND PHOTOSPHERIC EMISSIONS IN COLLAPSING MASSIVE PROGENITORS OF LONG-DURATION GAMMA-RAY BURSTS , 2010, 1009.2326.

[38]  Subhash Saini,et al.  Performance Evaluation of Intel Broadwell Nodes Based Supercomputer Using Computational Fluid Dynamics and Climate Applications , 2017, 2017 IEEE 19th International Conference on High Performance Computing and Communications Workshops (HPCCWS).

[39]  Christiane Lechner,et al.  Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations , 2006, Comput. Phys. Commun..

[40]  Philip A. Hughes,et al.  Three-dimensional Hydrodynamic Simulations of Relativistic Extragalactic Jets , 2002, astro-ph/0202402.

[41]  B. Stephens,et al.  Collapse of magnetized hypermassive neutron stars in general relativity. , 2005, Physical review letters.

[42]  E. Ros,et al.  Spectral evolution of flaring blazars from numerical simulations , 2016, 1601.03181.

[43]  E. Schnetter,et al.  A multi-block infrastructure for three-dimensional time-dependent numerical relativity , 2006, gr-qc/0602104.

[44]  V. Bosch-Ramon,et al.  UNDERSTANDING THE VERY-HIGH-ENERGY EMISSION FROM MICROQUASARS , 2008, 0805.4123.