Force-based higher-order beam element with flexural-shear-torsional interaction in 3D frames. Part II: Applications
暂无分享,去创建一个
Rui Pinho | João Saraiva Esteves Pacheco de Almeida | António A. Correia | A. Correia | J. Almeida | R. Pinho
[1] Rui Pinho,et al. Adaptive force-based frame element for regularized softening response , 2012 .
[2] Rui Pinho,et al. Force-based higher-order beam element with flexural – shear – torsional interaction in 3 D frames , 2015 .
[3] Gangan Prathap,et al. Beam elements based on a higher order theory-II - Boundary layer sensitivity and stress oscillations , 1996 .
[4] D. White,et al. A mixed finite element for three-dimensional nonlinear analysis of steel frames , 2004 .
[5] J. Reddy. Theory and Analysis of Elastic Plates and Shells , 2006 .
[6] Moshe Eisenberger,et al. An exact high order beam element , 2003 .
[7] Rui Pinho,et al. Force-based higher-order beam element with flexural–shear–torsional interaction in 3D frames. Part I: Theory , 2015 .
[8] K. Washizu,et al. Variational Methods in Elasticity and Plasticity, 3rd Ed. , 1982 .
[9] M. de Saint-Venant,et al. Mémoire sur la torsion des prismes : avec des considérations sur leur flexion ainsi que sur l'équilibre intérieur des solides élastiques en général, et des formules pratiques ... , 1856 .
[10] F. Gruttmann,et al. A nonlinear Hu–Washizu variational formulation and related finite-element implementation for spatial beams with arbitrary moderate thick cross-sections , 2011 .
[11] K. Washizu. Variational Methods in Elasticity and Plasticity , 1982 .
[12] J. A. Freitas,et al. Non-conventional formulations for the finite element method , 1996 .
[13] M. Levinson,et al. A new rectangular beam theory , 1981 .
[14] J. Reddy,et al. A higher order beam finite element for bending and vibration problems , 1988 .
[15] J. Reddy. A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .
[16] E. Carrera,et al. Refined beam theories based on a unified formulation , 2010 .
[17] E. Carrera,et al. Refined beam elements with arbitrary cross-section geometries , 2010 .
[18] B. D. Veubeke. Displacement and equilibrium models in the finite element method , 1965 .
[19] Pin Tong,et al. Rationalization in Deriving Element Stiffness Matrix by Assumed Stress Approach , 1968 .
[20] F. Filippou,et al. Mixed formulation of nonlinear beam finite element , 1996 .
[21] Robert L. Taylor,et al. Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity , 1995 .
[22] J. Reddy. Canonical relationships between bending solutions of classical and shear deformation beam and plate theories , 2009 .
[23] F. Gruttmann,et al. A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models , 2009 .
[24] O. C. Zienkiewicz. Displacement and equilibrium models in the finite element method by B. Fraeijs de Veubeke, Chapter 9, Pages 145–197 of Stress Analysis, Edited by O. C. Zienkiewicz and G. S. Holister, Published by John Wiley & Sons, 1965 , 2001 .
[25] S. Timoshenko. History of strength of materials , 1953 .
[26] Katrin Beyer,et al. Modelling Approaches for Inelastic Behaviour of RC Walls: Multi-level Assessment and Dependability of Results , 2016 .
[27] Gaetano Giunta,et al. Beam Structures: Classical and Advanced Theories , 2011 .
[28] K. Bathe. Finite Element Procedures , 1995 .