Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation

Interval-valued intuitionistic fuzzy preference relation (IVIFPR) is an important structure in representing fuzzy information comprehensively. This paper focuses on the multiplicative consistency of the IVIFPR. Some concepts, such as the approximate multiplicative consistent IVIFPR, the perfect multiplicative consistent IVIFPR and the acceptable multiplicative consistent IVIFPR are defined. Then, a desirable property of multiplicative consistent IVIFPR is investigated. Two algorithms are developed to construct the approximate/perfect multiplicative consistent IVIFPR. Since inconsistent IVIFPR is common but unreasonable in deriving the priorities of an IVIFPR, an iterative procedure is proposed to improve the consistency of an inconsistent IVIFPR. Furthermore, a convergent approach is developed for group decision making with IVIFPRs. Several numerical examples are given to illustrate the validity and applicability of the algorithms and procedures.

[1]  Janusz Kacprzyk,et al.  A consensus‐reaching process under intuitionistic fuzzy preference relations , 2003, Int. J. Intell. Syst..

[2]  Zhou-Jing Wang,et al.  An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights , 2009, Inf. Sci..

[3]  Jian Jhen Chen,et al.  Approach to Group Decision Making Based on Interval-Valued Intuitionistic Judgment Matrices , 2007 .

[4]  Zeshui Xu,et al.  Multi-criteria decision making with intuitionistic fuzzy PROMETHEE , 2014, J. Intell. Fuzzy Syst..

[5]  Zeshui Xu,et al.  Priorities of Intuitionistic Fuzzy Preference Relation Based on Multiplicative Consistency , 2014, IEEE Transactions on Fuzzy Systems.

[6]  K. Atanassov Operators over interval valued intuitionistic fuzzy sets , 1994 .

[7]  Francisco Herrera,et al.  Direct approach processes in group decision making using linguistic OWA operators , 1996, Fuzzy Sets Syst..

[8]  Zeshui Xu,et al.  Preference Relations Based on Intuitionistic Multiplicative Information , 2013, IEEE Transactions on Fuzzy Systems.

[9]  Zeshui Xu,et al.  Multiplicative Consistency of hesitant fuzzy Preference Relation and its Application in Group Decision Making , 2014, Int. J. Inf. Technol. Decis. Mak..

[10]  Zeshui Xu,et al.  Intuitionistic preference relations and their application in group decision making , 2007, Inf. Sci..

[11]  Janusz Kacprzyk,et al.  Distances between intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[12]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[13]  Ting-Yu Chen,et al.  A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: A comparative perspective , 2011, Expert Syst. Appl..

[14]  Zeshui Xu,et al.  Intuitionistic Fuzzy Analytic Hierarchy Process , 2014, IEEE Transactions on Fuzzy Systems.

[15]  Zeshui Xu,et al.  Intuitionistic and interval-valued intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group , 2009, Fuzzy Optim. Decis. Mak..

[16]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[17]  Zeshui Xu,et al.  Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making , 2014, Inf. Sci..

[18]  Zeshui Xu,et al.  Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment , 2012, Inf. Fusion.

[19]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[20]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[21]  Zeshui Xu,et al.  Automatic procedures for group decision making with intuitionistic fuzzy preference relations , 2014, J. Intell. Fuzzy Syst..

[22]  T. Tanino Fuzzy preference orderings in group decision making , 1984 .

[23]  Zeshui Xu,et al.  Incomplete interval-valued intuitionistic fuzzy preference relations , 2009, Int. J. Gen. Syst..

[24]  Zeshui Xu,et al.  Algorithms for estimating missing elements of incomplete intuitionistic preference relations , 2011, Int. J. Intell. Syst..

[25]  Francisco Herrera,et al.  Cardinal Consistency of Reciprocal Preference Relations: A Characterization of Multiplicative Transitivity , 2009, IEEE Transactions on Fuzzy Systems.

[26]  Janusz Kacprzyk,et al.  Using intuitionistic fuzzy sets in group decision making , 2002 .

[27]  Zeshui Xu,et al.  Some Algorithms for Group Decision Making with Intuitionistic Fuzzy Preference Information , 2014, Int. J. Uncertain. Fuzziness Knowl. Based Syst..