Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin.

[1]  H. Vogel,et al.  Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin. , 2012, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[2]  Seong-Ryul Kim,et al.  Structure and Function of Papiliocin with Antimicrobial and Anti-inflammatory Activities Isolated from the Swallowtail Butterfly, Papilio xuthus* , 2011, The Journal of Biological Chemistry.

[3]  Tae-Joon Park,et al.  Solution and solid-state NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II. , 2011, Biophysical journal.

[4]  H. Vogel,et al.  The expanding scope of antimicrobial peptide structures and their modes of action. , 2011, Trends in biotechnology.

[5]  S. Funari,et al.  Lactoferrin-derived antimicrobial peptide induces a micellar cubic phase in a model membrane system. , 2011, Biophysical journal.

[6]  Yizhen Wang,et al.  Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides , 2011, BioMetals.

[7]  P. Campiglia,et al.  Peptides from Royal Jelly: studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins , 2011, Journal of peptide science : an official publication of the European Peptide Society.

[8]  A. di Nola,et al.  Conformational study of bovine lactoferricin in membrane-micking conditions by molecular dynamics simulation and circular dichroism , 2011, BioMetals.

[9]  S. George,et al.  Three novel antimicrobial peptides from the skin of the Indian bronzed frog Hylarana temporalis (Anura: Ranidae) , 2011, Journal of peptide science : an official publication of the European Peptide Society.

[10]  Hailong Yang,et al.  Two novel antimicrobial peptides from skin secretions of the frog, Rana nigrovittata , 2011, Journal of peptide science : an official publication of the European Peptide Society.

[11]  Hans J. Vogel,et al.  Serum Stabilities of Short Tryptophan- and Arginine-Rich Antimicrobial Peptide Analogs , 2010, PloS one.

[12]  H. Vogel,et al.  Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view , 2010, BioMetals.

[13]  M. Cassone,et al.  Synergy among antibacterial peptides and between peptides and small-molecule antibiotics , 2010, Expert review of anti-infective therapy.

[14]  H. Vogel,et al.  Structure-function studies of chemokine-derived carboxy-terminal antimicrobial peptides. , 2010, Biochimica et biophysica acta.

[15]  M. Garza,et al.  Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli , 2010, BioMetals.

[16]  D. Legrand,et al.  A critical review of the roles of host lactoferrin in immunity , 2010, BioMetals.

[17]  M. Garza,et al.  Microbicidal effect of the lactoferrin peptides Lactoferricin17–30, Lactoferrampin265–284, and Lactoferrin chimera on the parasite Entamoeba histolytica , 2010, BioMetals.

[18]  C. Aisenbrey,et al.  Solid-state NMR approaches to measure topological equilibria and dynamics of membrane polypeptides. , 2010, Biochimica et biophysica acta.

[19]  M. Pézolet,et al.  Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[20]  H. Vogel,et al.  Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? , 2009, Biochimica et biophysica acta.

[21]  Virander S. Chauhan,et al.  Antimicrobial action of prototypic amphipathic cationic decapeptides and their branched dimers. , 2009, Biochemistry.

[22]  S. González-Chávez,et al.  Lactoferrin: structure, function and applications. , 2009, International journal of antimicrobial agents.

[23]  J. Kim,et al.  Effect of dimerization of a β-turn antimicrobial peptide, PST13-RK, on antimicrobial activity and mammalian cell toxicity , 2009, Biotechnology Letters.

[24]  W. Hong-biao,et al.  Biological activities of cecropin B-thanatin hybrid peptides. , 2008, The journal of peptide research : official journal of the American Peptide Society.

[25]  C. Shaw,et al.  Novel dermaseptin, adenoregulin and caerin homologs from the Central American red-eyed leaf frog, Agalychnis callidryas, revealed by functional peptidomics of defensive skin secretion. , 2008, Biochimie.

[26]  K. Henzler-Wildman,et al.  NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. , 2008, Biochemistry.

[27]  R. H. Fillingame,et al.  Interaction of transmembrane helices in ATP synthase subunit a in solution as revealed by spin label difference NMR. , 2008, Biochimica et biophysica acta.

[28]  M. Nishida,et al.  Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism. , 2007, Biochemistry.

[29]  Christian Kandt,et al.  Computer simulation of antimicrobial peptides. , 2007, Current medicinal chemistry.

[30]  Jianxu Li,et al.  A new family of antimicrobial peptides from skin secretions of Rana pleuraden , 2007, Peptides.

[31]  H. Vogel,et al.  Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. , 2007, Biochimica et biophysica acta.

[32]  M. Shim,et al.  Purification and characterization of antimicrobial peptides from the skin secretion of Rana dybowskii , 2007, Peptides.

[33]  B. Lemaître,et al.  The host defense of Drosophila melanogaster. , 2007, Annual review of immunology.

[34]  A. Bjourson,et al.  Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri , 2006, Peptides.

[35]  S. Cherry,et al.  Host-pathogen interactions in drosophila: new tricks from an old friend , 2006, Nature Immunology.

[36]  R. Prosser,et al.  Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. , 2006, Biochemistry.

[37]  H. Vogel,et al.  Comparison of NMR structures and model-membrane interactions of 15-residue antimicrobial peptides derived from bovine lactoferricin. , 2006, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[38]  E. Veerman,et al.  Distinct bactericidal activities of bovine lactoferrin peptides LFampin 268-284 and LFampin 265-284: Asp-Leu-Ile makes a difference. , 2006, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[39]  G. Veglia,et al.  Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, determined by NMR spectroscopy. , 2006, Biochemistry.

[40]  David Andreu,et al.  Activity of Cecropin A-Melittin Hybrid Peptides against Colistin-Resistant Clinical Strains of Acinetobacter baumannii: Molecular Basis for the Differential Mechanisms of Action , 2006, Antimicrobial Agents and Chemotherapy.

[41]  E. Veerman,et al.  Effect of amino acid substitutions on the candidacidal activity of LFampin 265–284 , 2005, Peptides.

[42]  Gifford Jl,et al.  Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. , 2005 .

[43]  E. Veerman,et al.  Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli , 2005, Peptides.

[44]  H. Vogel,et al.  Human Lactoferricin Is Partially Folded in Aqueous Solution and Is Better Stabilized in a Membrane Mimetic Solvent , 2005, Antimicrobial Agents and Chemotherapy.

[45]  H. Vogel,et al.  Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin , 2005, Journal of peptide science : an official publication of the European Peptide Society.

[46]  E. Veerman,et al.  Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part , 2005, Biological chemistry.

[47]  Ø. Samuelsen,et al.  Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. , 2004, FEMS microbiology letters.

[48]  W. Kamysz,et al.  In vitro activity and killing effect of the synthetic hybrid cecropin A-melittin peptide CA(1-7)M(2-9)NH(2) on methicillin-resistant nosocomial isolates of Staphylococcus aureus and interactions with clinically used antibiotics. , 2004, Diagnostic microbiology and infectious disease.

[49]  E. Veerman,et al.  Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin , 2004, Peptides.

[50]  J. Łukasiak,et al.  Comparative activities of cecropin A, melittin, and cecropin A–melittin peptide CA(1–7)M(2–9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii , 2003, Peptides.

[51]  J. Killian,et al.  Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. , 2003, Biochemistry.

[52]  H. Jörnvall,et al.  Antimicrobial peptides in the first line defence of human colon mucosa , 2003, Peptides.

[53]  T. Niidome,et al.  Parallel and antiparallel dimers of magainin 2: their interaction with phospholipid membrane and antibacterial activity , 2002, Journal of peptide science : an official publication of the European Peptide Society.

[54]  T. Tachi,et al.  Dimer structure of magainin 2 bound to phospholipid vesicles. , 2002, Biopolymers.

[55]  E. Greenberg,et al.  A component of innate immunity prevents bacterial biofilm development , 2002, Nature.

[56]  H. Vogel,et al.  The Solution Structures of the Human β-Defensins Lead to a Better Understanding of the Potent Bactericidal Activity of HBD3 against Staphylococcus aureus * , 2002, The Journal of Biological Chemistry.

[57]  K Sandvik,et al.  The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm , 2001, FEBS letters.

[58]  R. Hancock,et al.  Synergistic Interactions between Mammalian Antimicrobial Defense Peptides , 2001, Antimicrobial Agents and Chemotherapy.

[59]  Ø. Olsvik,et al.  Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes , 2001, FEBS letters.

[60]  R. Hancock,et al.  The role of cationic antimicrobial peptides in innate host defences. , 2000, Trends in microbiology.

[61]  H. Vogel,et al.  Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. , 1999, The Journal of antimicrobial chemotherapy.

[62]  H. Vogel,et al.  The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles , 1999, FEBS letters.

[63]  R. Hodges,et al.  Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. , 1999, Biochimica et biophysica acta.

[64]  M. Zasloff,et al.  Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. , 1998, Biochemistry.

[65]  S. White,et al.  The preference of tryptophan for membrane interfaces. , 1998, Biochemistry.

[66]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[67]  M. Buck,et al.  Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins , 1998, Quarterly Reviews of Biophysics.

[68]  C. Schwarz,et al.  NMR investigation of the multidrug transporter EmrE, an integral membrane protein. , 1998, European journal of biochemistry.

[69]  M. Girvin,et al.  Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. , 1998, Biochemistry.

[70]  H. Vogel,et al.  Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. , 1998, Biochemistry.

[71]  C. Groom,et al.  STRUCTURE OF DIFERRIC BOVINE LACTOFERRIN AT 2.8 ANGSTROMS RESOLUTION , 1997 .

[72]  C. Groom,et al.  Three-dimensional structure of diferric bovine lactoferrin at 2.8 A resolution. , 1997, Journal of molecular biology.

[73]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[74]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[75]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[76]  H. Westerhoff,et al.  Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. , 1995, European journal of biochemistry.

[77]  A. J. Shaka,et al.  Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients , 1995 .

[78]  M. Girvin,et al.  Helical structure and folding of subunit c of F1F0 ATP synthase: 1H NMR resonance assignments and NOE analysis. , 1993, Biochemistry.

[79]  H. Vogel,et al.  A peptide analog of the calmodulin‐binding domain of myosin light chain kinase adopts an aL‐helical structure in aqueous trifluoroethanol , 1993, Protein science : a publication of the Protein Society.

[80]  F. Eiserling,et al.  A molecular model for membrane fusion based on solution studies of an amphiphilic peptide from HIV gp41 , 1992, Protein science : a publication of the Protein Society.

[81]  K. Yamauchi,et al.  Identification of the bactericidal domain of lactoferrin. , 1992, Biochimica et biophysica acta.

[82]  R. B. Merrifield,et al.  Shortened cecropin A‐melittin hybrids Significant size reduction retains potent antibiotic activity , 1992, FEBS letters.

[83]  K. Yamauchi,et al.  Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. , 1991, Journal of dairy science.

[84]  K. Gable,et al.  Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. , 1990, Biochemistry.

[85]  M. Zasloff,et al.  Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[86]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[87]  M. Zasloff,et al.  Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor , 1987 .

[88]  G. Kreil,et al.  A novel peptide designated PYLa and its precursor as predicted from cloned mRNA of Xenopus laevis skin. , 1983, The EMBO journal.

[89]  E. Prenner,et al.  Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions , 2011, Journal of pharmacy & bioallied sciences.

[90]  K. Nazmi,et al.  C- and N-truncated antimicrobial peptides from LFampin 265 – 284: Biophysical versus microbiology results , 2011, Journal of pharmacy & bioallied sciences.

[91]  H. Vogel,et al.  Novel lactoferrampin antimicrobial peptides derived from human lactoferrin. , 2009, Biochimie.

[92]  N. León-Sicairos,et al.  Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. , 2009, Biochimie.

[93]  E. Veerman,et al.  Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. , 2009, Biochimie.

[94]  H. Vogel,et al.  Lactoferricin , 2005, Cellular and Molecular Life Sciences.

[95]  Bruce A Johnson,et al.  Using NMRView to visualize and analyze the NMR spectra of macromolecules. , 2004, Methods in molecular biology.

[96]  H. Vogel,et al.  Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[97]  M Nilges,et al.  Automated assignment of ambiguous nuclear overhauser effects with ARIA. , 2001, Methods in enzymology.

[98]  W. Maloy,et al.  Structure–activity studies on magainins and other host defense peptides , 1995, Biopolymers.

[99]  B. Ames ASSAY OF INORGANIC PHOSPHATE, TOTAL PHOSPHATE AND PHOSPHATASE , 1966 .