All-optical integrated logic operations based on chemical communication between molecular switches.

Molecular logic gates process physical or chemical "inputs" to generate "outputs" based on a set of logical operators. We report the design and operation of a chemical ensemble in solution that behaves as integrated AND, OR, and XNOR gates with optical input and output signals. The ensemble is composed of a reversible merocyanine-type photoacid and a ruthenium polypyridine complex that functions as a pH-controlled three-state luminescent switch. The light-triggered release of protons from the photoacid is used to control the state of the transition-metal complex. Therefore, the two molecular switching devices communicate with one another through the exchange of ionic signals. By means of such a double (optical-chemical-optical) signal-transduction mechanism, inputs of violet light modulate a luminescence output in the red/far-red region of the visible spectrum. Nondestructive reading is guaranteed because the green light used for excitation in the photoluminescence experiments does not affect the state of the gate. The reset is thermally driven and, thus, does not involve the addition of chemicals and accumulation of byproducts. Owing to its reversibility and stability, this molecular device can afford many cycles of digital operation.

[1]  Nicolas H Voelcker,et al.  Sequence-addressable DNA logic. , 2008, Small.

[2]  K. Szaciłowski Digital information processing in molecular systems. , 2008, Chemical reviews.

[3]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.

[4]  Françisco M Raymo,et al.  All-optical processing with molecular switches , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Konrad Szaciłowski,et al.  Molecular logic gates based on pentacyanoferrate complexes: from simple gates to three-dimensional logic systems. , 2004, Chemistry.

[6]  A. Prasanna de Silva,et al.  Chemical approaches to nanometre-scale logic gates , 2006 .

[7]  J. Andréasson,et al.  Molecular 2:1 digital multiplexer. , 2007, Angewandte Chemie.

[8]  I. Willner,et al.  Elementary arithmetic operations by enzymes: a model for metabolic pathway based computing. , 2006, Angewandte Chemie.

[9]  Françisco M Raymo,et al.  Digital processing with a three-state molecular switch. , 2003, The Journal of organic chemistry.

[10]  Alberto Credi Moleküle, die Entscheidungen treffen , 2007 .

[11]  R. Levine,et al.  Molecule-based photonically switched half and full adder. , 2006, The journal of physical chemistry. A.

[12]  Jürgen Franz Optical communications components and systems , 2000 .

[13]  Milko E van der Boom,et al.  Chemical communication between metal-complex-based monolayers. , 2008, Angewandte Chemie.

[14]  J. Kavalieros,et al.  Integrated nanoelectronics for the future. , 2007, Nature materials.

[15]  Jean-Marie Lehn,et al.  Toward complex matter: Supramolecular chemistry and self-organization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Credi,et al.  pH-sensitive Ru(II) and Os(II) bis(2,2′:6′,2″-terpyridine) complexes: A photophysical investigation , 2007 .

[17]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[18]  John R. Gregg Ones and zeros - understanding Boolean algebra, digital circuits, and the logic of sets , 1998 .

[19]  I. Willner,et al.  Logic gates and elementary computing by enzymes. , 2006, The journal of physical chemistry. A.

[20]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[21]  Milko E van der Boom,et al.  Redox-active monolayers as a versatile platform for integrating boolean logic gates. , 2008, Angewandte Chemie.

[22]  Knut Rurack,et al.  An ionically driven molecular IMPLICATION gate operating in fluorescence mode. , 2007, Chemistry.

[23]  B. Masters Confocal Microscopy And Multiphoton Excitation Microscopy: The Genesis of Live Cell Imaging , 2006 .

[24]  T. Moore,et al.  Molecular switches controlled by light. , 2006, Chemical communications.

[25]  A. P. de Silva,et al.  Molecular logic and computing. , 2007, Nature nanotechnology.

[26]  Ehud Shapiro,et al.  Biotechnology: logic goes in vitro. , 2007, Nature nanotechnology.

[27]  M. Neuburger,et al.  Vectorial property dependence in bis {4'-(n-pyridyl)-2,2':6',2"-terpyridine}iron(II) and ruthenium(II) complexes with n = 2, 3 and 4. , 2008, Dalton transactions.

[28]  E. Pérez-Inestrosa,et al.  A molecular 1 : 2 demultiplexer. , 2008, Chemical communications.

[29]  B. Masters Confocal Microscopy and Multiphoton Excitation Microscopy , 2006 .

[30]  Françoise Remacle,et al.  Intermolecular and intramolecular logic gates , 2001 .

[31]  U. Pischel,et al.  Molecular logic devices (half-subtractor, comparator, complementary output circuit) by controlling photoinduced charge transfer processes , 2008 .

[32]  Françisco M. Raymo,et al.  Photoinduced proton exchange between molecular switches , 2004 .

[33]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[34]  M. Amelia,et al.  A simple unimolecular multiplexer/demultiplexer. , 2008, Angewandte Chemie.

[35]  A. Credi,et al.  Processing energy and signals by molecular and supramolecular systems. , 2008, Chemistry.

[36]  Michael J Sailor,et al.  Nanoparticle self-assembly gated by logical proteolytic triggers. , 2007, Journal of the American Chemical Society.

[37]  Gonen Ashkenasy,et al.  Boolean logic functions of a synthetic peptide network. , 2004, Journal of the American Chemical Society.

[38]  A. P. de Silva,et al.  Membrane media create small nanospaces for molecular computation. , 2005, Journal of the American Chemical Society.

[39]  A. P. de Silva,et al.  Molecular-scale logic gates. , 2004, Chemistry.

[40]  Shammai Speiser,et al.  A novel all optical molecular scale full adder , 2008 .

[41]  Alberto Credi,et al.  Molecular logic: Monolayers with an IQ , 2008 .

[42]  Jean François Tremblay AN EXPERIENCED NEWCOMER , 2006 .

[43]  E. Katz,et al.  Biocomputing security system: concatenated enzyme-based logic gates operating as a biomolecular keypad lock. , 2008, Journal of the American Chemical Society.

[44]  Françoise Remacle,et al.  All-optical digital logic : Full addition or subtraction on a three-state system , 2006 .

[45]  Wojciech Macyk,et al.  Light-driven OR and XOR programmable chemical logic gates. , 2006, Journal of the American Chemical Society.

[46]  Trevor Yann,et al.  Molecular Logic: A Half-Subtractor Based on Tetraphenylporphyrin [J. Am. Chem. Soc. 2003, 125, 11198−11199]. , 2003 .

[47]  J. Andréasson,et al.  A molecule-based 1: 2 Digital demultiplexer , 2007 .

[48]  Uwe Pischel,et al.  Chemical approaches to molecular logic elements for addition and subtraction. , 2007, Angewandte Chemie.

[49]  A. Credi,et al.  Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .

[50]  Vincenzo Balzani,et al.  Molecular logic circuits. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[52]  A. Coskun,et al.  Effective PET and ICT switching of boradiazaindacene emission: a unimolecular, emission-mode, molecular half-subtractor with reconfigurable logic gates. , 2005, Organic letters.

[53]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[54]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[55]  K. Szaciłowski,et al.  Photosensitization and the photocurrent switching effect in nanocrystalline titanium dioxide functionalized with iron(II) complexes: a comparative study. , 2007, Chemistry.

[56]  Françisco M Raymo,et al.  Memory effects based on intermolecular photoinduced proton transfer. , 2003, Journal of the American Chemical Society.

[57]  Françisco M Raymo,et al.  A switch in a cage with a memory. , 2003, Organic letters.

[58]  H. Taguchi,et al.  Semibiological molecular machine with an implemented "AND" logic gate for regulation of protein folding. , 2006, Journal of the American Chemical Society.

[59]  R. Weiss,et al.  A universal RNAi-based logic evaluator that operates in mammalian cells , 2007, Nature Biotechnology.

[60]  Darko Stefanovic,et al.  Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. , 2006, Biochemistry.

[61]  J. Macdonald,et al.  Deoxyribozyme-based ligase logic gates and their initial circuits. , 2005, Journal of the American Chemical Society.

[62]  A. Credi Molecules that make decisions. , 2007, Angewandte Chemie.

[63]  M. Wasielewski,et al.  Ultrafast molecular logic gate based on optical switching between two long-lived radical ion pair states. , 2001, Journal of the American Chemical Society.

[64]  M. Ghadiri,et al.  Design of molecular logic devices based on a programmable DNA-regulated semisynthetic enzyme. , 2007, Angewandte Chemie.

[65]  Milan N Stojanovic,et al.  Networking particles over distance using oligonucleotide-based devices. , 2007, Journal of the American Chemical Society.

[66]  Trevor Yann,et al.  Molecular logic: a half-subtractor based on tetraphenylporphyrin. , 2003, Journal of the American Chemical Society.

[67]  R. Brow,et al.  Structure of GeO2–P2O5 glasses studied by x-ray and neutron diffraction , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[68]  A. Shanzer,et al.  A molecular full-adder and full-subtractor, an additional step toward a moleculator. , 2006, Journal of the American Chemical Society.

[69]  A. P. De Silva,et al.  Molecular computation: Molecular logic gets loaded , 2005 .

[70]  David Margulies,et al.  Fluorescein as a model molecular calculator with reset capability , 2005, Nature materials.

[71]  A. P. de Silva,et al.  Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a "lab-on-a-molecule" prototype. , 2006, Journal of the American Chemical Society.

[72]  D. Qu,et al.  A half adder based on a photochemically driven [2]rotaxane. , 2005, Angewandte Chemie.

[73]  Galina Melman,et al.  A molecular keypad lock: a photochemical device capable of authorizing password entries. , 2007, Journal of the American Chemical Society.

[74]  H. Tian,et al.  A fluorophore capable of crossword puzzles and logic memory. , 2007, Angewandte Chemie.

[75]  Bernadine O. F. McKinney,et al.  Molecular computational elements encode large populations of small objects , 2006, Nature materials.

[76]  J. Andréasson,et al.  Molecular AND and INHIBIT gates based on control of porphyrin fluorescence by photochromes. , 2005, Journal of the American Chemical Society.

[77]  Françisco M Raymo,et al.  Optical processing with photochromic switches. , 2006, Chemistry.

[78]  F. Raymo,et al.  Signal processing at the molecular level. , 2001, Journal of the American Chemical Society.

[79]  Amar H. Flood,et al.  Nanoelectronic devices from self-organized molecular switches , 2005 .

[80]  F. Raymo,et al.  Signal communication between molecular switches. , 2001, Organic letters.

[81]  A. P. de Silva,et al.  Analog parallel processing of molecular sensory information. , 2007, Journal of the American Chemical Society.

[82]  A multistate ensemble of molecular switches , 2006 .

[83]  Richard A Lerner,et al.  Prodrug activation gated by a molecular "OR" logic trigger. , 2005, Angewandte Chemie.

[84]  He Tian,et al.  Intramolecular Charge-Transfer Process Based on Dicyanomethylene-4H-pyran Derivative: An Integrated Operation of Half-Subtractor and Comparator , 2008 .

[85]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[86]  Uwe Pischel,et al.  Chemische Strategien für den Aufbau molekularer Logikelemente zur Addition und Subtraktion , 2007 .

[87]  Joakim Andréasson,et al.  All-photonic molecular half-adder. , 2006, Journal of the American Chemical Society.

[88]  David S. Goodsell,et al.  Bionanotechnology: Lessons from Nature , 2004 .

[89]  Evgeny Katz,et al.  Multiple logic gates based on electrically wired surface-reconstituted enzymes. , 2008, Journal of the American Chemical Society.

[90]  Juyoung Yoon,et al.  Fluorescent molecular logic gates using microfluidic devices. , 2008, Angewandte Chemie.

[91]  H. Tian,et al.  Next step of photochromic switches , 2008 .

[92]  Thomas A. Moore,et al.  All‐Photonic Molecular XOR and NOR Logic Gates Based on Photochemical Control of Fluorescence in a Fulgimide–Porphyrin–Dithienylethene Triad , 2007 .

[93]  Alberto Credi,et al.  A simple molecular machine operated by photoinduced proton transfer. , 2007, Journal of the American Chemical Society.

[94]  H. T. Baytekin,et al.  A molecular NAND gate based on Watson-Crick base pairing. , 2000, Organic letters.

[95]  Itamar Willner,et al.  Concatenated logic gates using four coupled biocatalysts operating in series , 2006, Proceedings of the National Academy of Sciences.

[96]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.