Constant mean curvature surfaces in AdS3

[1]  N. Drukker,et al.  Space-like minimal surfaces in AdS × S , 2009, 0912.3829.

[2]  J. Maldacena,et al.  Thermodynamic bubble ansatz , 2009, 0911.4708.

[3]  Benjamin A. Burrington,et al.  Minimal surfaces in AdS space and integrable systems , 2009, 0911.4551.

[4]  A. Jevicki,et al.  Series solution and minimal surfaces in AdS , 2009, 0911.1107.

[5]  H. Dorn Some comments on spacelike minimal surfaces with null polygonal boundaries in AdSm , 2009, 0910.0934.

[6]  K. Sakai,et al.  A note on string solutions in AdS3 , 2009, 0907.5259.

[7]  岩崎 皓 A Numerical Study of Gluon Scattering Amplitudes in N=4 Super Yang-Mills Theory at Strong Coupling , 2009 .

[8]  J. Maldacena,et al.  Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space , 2009, 0904.0663.

[9]  Kewang Jin,et al.  Moduli dynamics of AdS3 strings , 2009, 0903.3389.

[10]  G. Jorjadze,et al.  On spacelike and timelike minimal surfaces in AdS(n) , 2009, 0903.0977.

[11]  A. Mironov,et al.  Boundary ring: A way to construct approximate NG solutions with polygon boundary conditions I. Zn-symmetric configurations , 2009 .

[12]  P. Vieira,et al.  The AdS4/CFT3 algebraic curve , 2008, 0807.0437.

[13]  K. Ito,et al.  A numerical study of gluon scattering amplitudes in = 4 super Yang-Mills theory at strong coupling , 2008, 0805.3594.

[14]  C. Thorn,et al.  Classical Worldsheets for String Scattering on Flat and AdS Spacetime , 2008, 0805.0388.

[15]  T. Tomaras,et al.  Some properties of the Alday–Maldacena minimum , 2008 .

[16]  A. Morozov,et al.  Boundary Ring or a Way to Construct Approximate NG Solutions with Polygon Boundary Conditions. II. Polygons which admit an inscribed circle , 2007 .

[17]  A. Volovich,et al.  Generating AdS String Solutions , 2007, 0712.1193.

[18]  S. Ryang Conformal SO(2, 4) transformations of the one-cusp Wilson loop surface , 2007, 0710.1673.

[19]  D. Astefanesei,et al.  Comments on gluon 6-point scattering amplitudes in = 4 SYM at strong coupling , 2007, 0710.1684.

[20]  T. Tomaras,et al.  On n-point amplitudes in N = 4 SYM , 2007, 0708.1625.

[21]  J. Maldacena,et al.  Gluon scattering amplitudes at strong coupling , 2007, 0705.0303.

[22]  N. Dorey,et al.  A symplectic structure for string theory on integrable backgrounds , 2006, hep-th/0606287.

[23]  N. Dorey,et al.  On the Dynamics of Finite-Gap Solutions in Classical String Theory , 2006, hep-th/0601194.

[24]  V. Kazakov,et al.  The Algebraic Curve of Classical Superstrings on AdS5×S5 , 2005, hep-th/0502226.

[25]  V. Kazakov,et al.  Algebraic Curve for the SO(6) Sector of AdS/CFT , 2004, hep-th/0410253.

[26]  V. Kazakov,et al.  Classical/quantum integrability in non-compact sector of AdS/CFT , 2004, hep-th/0410105.

[27]  V. Kazakov,et al.  Classical/quantum integrability in AdS/CFT , 2004 .

[28]  A. Polyakov,et al.  A semi-classical limit of the gauge/string correspondence , 2002, hep-th/0204051.

[29]  Alexander I. Bobenko,et al.  All constant mean curvature tori inR3,S3,H3 in terms of theta-functions , 1991 .

[30]  I. Krichever Two-dimensional algebraic-geometric operators with self-consistent potentials , 1994 .