Constant mean curvature surfaces in AdS3
暂无分享,去创建一个
[1] N. Drukker,et al. Space-like minimal surfaces in AdS × S , 2009, 0912.3829.
[2] J. Maldacena,et al. Thermodynamic bubble ansatz , 2009, 0911.4708.
[3] Benjamin A. Burrington,et al. Minimal surfaces in AdS space and integrable systems , 2009, 0911.4551.
[4] A. Jevicki,et al. Series solution and minimal surfaces in AdS , 2009, 0911.1107.
[5] H. Dorn. Some comments on spacelike minimal surfaces with null polygonal boundaries in AdSm , 2009, 0910.0934.
[6] K. Sakai,et al. A note on string solutions in AdS3 , 2009, 0907.5259.
[7] 岩崎 皓. A Numerical Study of Gluon Scattering Amplitudes in N=4 Super Yang-Mills Theory at Strong Coupling , 2009 .
[8] J. Maldacena,et al. Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space , 2009, 0904.0663.
[9] Kewang Jin,et al. Moduli dynamics of AdS3 strings , 2009, 0903.3389.
[10] G. Jorjadze,et al. On spacelike and timelike minimal surfaces in AdS(n) , 2009, 0903.0977.
[11] A. Mironov,et al. Boundary ring: A way to construct approximate NG solutions with polygon boundary conditions I. Zn-symmetric configurations , 2009 .
[12] P. Vieira,et al. The AdS4/CFT3 algebraic curve , 2008, 0807.0437.
[13] K. Ito,et al. A numerical study of gluon scattering amplitudes in = 4 super Yang-Mills theory at strong coupling , 2008, 0805.3594.
[14] C. Thorn,et al. Classical Worldsheets for String Scattering on Flat and AdS Spacetime , 2008, 0805.0388.
[15] T. Tomaras,et al. Some properties of the Alday–Maldacena minimum , 2008 .
[16] A. Morozov,et al. Boundary Ring or a Way to Construct Approximate NG Solutions with Polygon Boundary Conditions. II. Polygons which admit an inscribed circle , 2007 .
[17] A. Volovich,et al. Generating AdS String Solutions , 2007, 0712.1193.
[18] S. Ryang. Conformal SO(2, 4) transformations of the one-cusp Wilson loop surface , 2007, 0710.1673.
[19] D. Astefanesei,et al. Comments on gluon 6-point scattering amplitudes in = 4 SYM at strong coupling , 2007, 0710.1684.
[20] T. Tomaras,et al. On n-point amplitudes in N = 4 SYM , 2007, 0708.1625.
[21] J. Maldacena,et al. Gluon scattering amplitudes at strong coupling , 2007, 0705.0303.
[22] N. Dorey,et al. A symplectic structure for string theory on integrable backgrounds , 2006, hep-th/0606287.
[23] N. Dorey,et al. On the Dynamics of Finite-Gap Solutions in Classical String Theory , 2006, hep-th/0601194.
[24] V. Kazakov,et al. The Algebraic Curve of Classical Superstrings on AdS5×S5 , 2005, hep-th/0502226.
[25] V. Kazakov,et al. Algebraic Curve for the SO(6) Sector of AdS/CFT , 2004, hep-th/0410253.
[26] V. Kazakov,et al. Classical/quantum integrability in non-compact sector of AdS/CFT , 2004, hep-th/0410105.
[27] V. Kazakov,et al. Classical/quantum integrability in AdS/CFT , 2004 .
[28] A. Polyakov,et al. A semi-classical limit of the gauge/string correspondence , 2002, hep-th/0204051.
[29] Alexander I. Bobenko,et al. All constant mean curvature tori inR3,S3,H3 in terms of theta-functions , 1991 .
[30] I. Krichever. Two-dimensional algebraic-geometric operators with self-consistent potentials , 1994 .