Nonlocal Myriad Filters for Cauchy Noise Removal

The contribution of this paper is twofold. First, we introduce a generalized myriad filter, which is a method to compute the joint maximum likelihood estimator of the location and the scale parameter of the Cauchy distribution. Estimating only the location parameter is known as myriad filter. We propose an efficient algorithm to compute the generalized myriad filter and prove its convergence. Special cases of this algorithm result in the classical myriad filtering and an algorithm for estimating only the scale parameter. Based on an asymptotic analysis, we develop a second, even faster generalized myriad filtering technique. Second, we use our new approaches within a nonlocal, fully unsupervised method to denoise images corrupted by Cauchy noise. Special attention is paid to the determination of similar patches in noisy images. Numerical examples demonstrate the excellent performance of our algorithms which have moreover the advantage to be robust with respect to the parameter choice.

[1]  Tieyong Zeng,et al.  Variational Approach for Restoring Blurred Images with Cauchy Noise , 2015, SIAM J. Imaging Sci..

[2]  Franklin M. Fisher,et al.  A Note on Estimation from a Cauchy Sample , 1964 .

[3]  Byron J. T. Morgan,et al.  Integrated squared error estimation of Cauchy parameters , 2001 .

[4]  Peyman Milanfar,et al.  Is Denoising Dead? , 2010, IEEE Transactions on Image Processing.

[5]  D. Bloch,et al.  A Note on the Estimation of the Location Parameter of the Cauchy Distribution , 1966 .

[6]  Lotfollah Shafai,et al.  Radiation Characteristics of Bent-Wire Antennas , 1970 .

[7]  Gonzalo R. Arce,et al.  Fast algorithms for weighted myriad computation by fixed-point search , 2000, IEEE Trans. Signal Process..

[8]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[9]  Yiqiu Dong,et al.  Cauchy Noise Removal by Nonconvex ADMM with Convergence Guarantees , 2017, Journal of Scientific Computing.

[10]  Roberto Cavoretto,et al.  Optimal Selection of Local Approximants in RBF-PU Interpolation , 2017, Journal of Scientific Computing.

[11]  Tomasz Pander,et al.  New polynomial approach to myriad filter computation , 2010, Signal Process..

[12]  Gonzalo R. Arce,et al.  Optimality of the myriad filter in practical impulsive-noise environments , 2001, IEEE Trans. Signal Process..

[13]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[14]  V. D. Barnett,et al.  Order Statistics Estimators of the Location of the Cauchy Distribution , 1966 .

[15]  Akimichi Takemura,et al.  Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE , 2005 .

[16]  Gonzalo R. Arce,et al.  Weighted myriad filters for image processing , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[17]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[18]  Stéphane Mallat,et al.  Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity , 2010, IEEE Transactions on Image Processing.

[19]  Jean-Michel Morel,et al.  Implementation of the "Non-Local Bayes" (NL-Bayes) Image Denoising Algorithm , 2013, Image Process. Line.

[20]  Jean-Michel Morel,et al.  A Nonlocal Bayesian Image Denoising Algorithm , 2013, SIAM J. Imaging Sci..

[21]  Gonzalo R. Arce,et al.  Fast and Accurate Computation of the Myriad Filter via Branch-and-Bound Search , 2008, IEEE Transactions on Signal Processing.

[22]  Gorm Gabrielsen,et al.  On the unimodality of the likelihood for the Cauchy distribution: Some comments , 1982 .

[23]  M. Shinde,et al.  Signal Detection in the Presence of Atmospheric Noise in Tropics , 1974, IEEE Trans. Commun..

[24]  P. K. Pollett,et al.  Hodges-Lehmann Scale Estimator for Cauchy Distribution , 2012 .

[25]  Gonzalo R. Arce,et al.  Weighted myriad filters: a robust filtering framework derived from alpha-stable distributions , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[26]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[27]  Florence Tupin,et al.  How to Compare Noisy Patches? Patch Similarity Beyond Gaussian Noise , 2012, International Journal of Computer Vision.

[28]  Gabriela V. Cohen Freue,et al.  The Pitman estimator of the Cauchy location parameter , 2007 .

[29]  Annika Lang,et al.  A new similarity measure for nonlocal filtering in the presence of multiplicative noise , 2012, Comput. Stat. Data Anal..

[30]  Kostadin Dabov,et al.  BM3D Image Denoising with Shape-Adaptive Principal Component Analysis , 2009 .

[31]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[32]  J. B. Copas,et al.  On the unimodality of the likelihood for the Cauchy distribution , 1975 .

[33]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[34]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[35]  A. Ben Hamza,et al.  Image denoising: a nonlinear robust statistical approach , 2001, IEEE Trans. Signal Process..

[36]  Joseph Salmon,et al.  On Two Parameters for Denoising With Non-Local Means , 2010, IEEE Signal Processing Letters.

[37]  Gonzalo R. Arce,et al.  Nonlinear Signal Processing - A Statistical Approach , 2004 .

[38]  J. J. Higgins,et al.  Window estimates of location and scale with applications to the cauchy distribution , 1977 .

[39]  Michael Elad,et al.  Patch-Ordering-Based Wavelet Frame and Its Use in Inverse Problems , 2014, IEEE Transactions on Image Processing.

[40]  Florence Tupin,et al.  Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights , 2009, IEEE Transactions on Image Processing.

[41]  Peter J. W. Rayner,et al.  Near optimal detection of signals in impulsive noise modeled with a symmetric /spl alpha/-stable distribution , 1998, IEEE Communications Letters.

[42]  Ioannis A. Koutrouvelis,et al.  Estimation of location and scale in Cauchy distributions using the empirical characteristic function , 1982 .

[43]  Monika Agrawal,et al.  Underwater acoustic communication in the presence of heavy-tailed impulsive noise with bi-parameter cauchy-Gaussian mixture model , 2013, 2013 Ocean Electronics (SYMPOL).

[44]  Jean-François Aujol,et al.  Estimation of the Noise Level Function Based on a Nonparametric Detection of Homogeneous Image Regions , 2015, SIAM J. Imaging Sci..

[45]  Anat Levin,et al.  Natural image denoising: Optimality and inherent bounds , 2011, CVPR 2011.

[46]  Jin Zhang A highly efficient L-estimator for the location parameter of the Cauchy distribution , 2010, Comput. Stat..

[47]  Thomas S. Ferguson,et al.  Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4 , 1978 .

[48]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[49]  M. Kendall The treatment of ties in ranking problems. , 1945, Biometrika.

[50]  F. Scholz,et al.  Maximum Likelihood Estimation for Type I Censored Weibull Data Including Covariates , 2001 .

[51]  Gwenda J. Cane Linear Estimation of Parameters of the Cauchy Distribution Based on Sample Quantiles , 1974 .

[52]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[53]  Jean-Michel Morel,et al.  Secrets of image denoising cuisine* , 2012, Acta Numerica.

[54]  Pierrick Coupé,et al.  Non-Local Means Variants for Denoising of Diffusion-Weighted and Diffusion Tensor MRI , 2007, MICCAI.

[55]  Tomasz Pander,et al.  The Iterative Trimming Approach to the Myriad Filter Computation , 2016, 2016 Third European Network Intelligence Conference (ENIC).

[56]  Mila Nikolova,et al.  A Nonlocal Denoising Algorithm for Manifold-Valued Images Using Second Order Statistics , 2016, SIAM J. Imaging Sci..

[57]  David Middleton,et al.  Statistical-Physical Models of Electromagnetic Interference , 1977, IEEE Transactions on Electromagnetic Compatibility.

[58]  Anisse Taleb,et al.  Suboptimal robust estimation using rank score functions , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..