Using Gaussian Process Regression (GPR) models with the Matérn covariance function to predict the dynamic viscosity and torque of SiO2/Ethylene glycol nanofluid: A machine learning approach

[1]  D. Toghraie,et al.  Statistical modeling and investigation of thermal characteristics of a new nanofluid containing cerium oxide powder , 2022, Heliyon.

[2]  D. Toghraie,et al.  Designing the best ANN topology for predicting the dynamic viscosity and rheological behavior of MWCNT-CuO (30:70)/ SAE 50 nano-lubricant , 2022, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[3]  A. Qayoum,et al.  Viscosity of CuO Nanofluids: Experimental Investigation and Modelling with FFBP-ANN , 2022, Thermochimica Acta.

[4]  A. J. Amalanathan,et al.  Experimental Study and ANN Analysis of Rheological Behavior of Mineral Oil-Based SiO2 Nanofluids , 2022, IEEE Transactions on Dielectrics and Electrical Insulation.

[5]  Mohamad Khaje Khabaz,et al.  Application of Artificial Intelligence and Using Optimal ANN to Predict the Dynamic Viscosity of MWCNT-ZnO (50-50)/oil SAE50 Hybrid Nano-lubricant , 2022, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[6]  K. Atanassov,et al.  Petroleum viscosity modeling using least squares and ANN methods , 2022, Journal of Petroleum Science and Engineering.

[7]  Z. Said,et al.  Synthesis, stability, density, viscosity of ethylene glycol-based ternary hybrid nanofluids: Experimental investigations and model -prediction using modern machine learning techniques , 2022, Powder Technology.

[8]  Xidong Wang,et al.  ANN-based structure-viscosity relationship model of multicomponent slags for production design in mineral wool , 2022, Construction and Building Materials.

[9]  Dongwei Zhang,et al.  Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study , 2022, International Journal of Heat and Mass Transfer.

[10]  J. Tu,et al.  Effects of variable magnetic field on particle fouling properties of magnetic nanofluids in a novel thermal exchanger system , 2022, International Journal of Thermal Sciences.

[11]  P. Singh,et al.  Thermofluidic characteristic of a nanofluid-cooled oblique fin heat sink: An experimental and numerical investigation , 2022 .

[12]  J. Tu,et al.  Experimental study on the influence of bionic channel structure and nanofluids on power generation characteristics of waste heat utilisation equipment , 2021, Applied Thermal Engineering.

[13]  J. Tu,et al.  Numerical simulation of flow and heat transfer characteristics of nanofluids in built-in porous twisted tape tube , 2021 .

[14]  J. Tu,et al.  Numerical analysis of flow and heat characteristic around micro-ribbed tube in heat exchanger system , 2021, Powder Technology.

[15]  Xidong Wang,et al.  Development of structure-informed artificial neural network for accurately modeling viscosity of multicomponent molten slags , 2021 .

[16]  I. Alarifi,et al.  An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid , 2020, Journal of Molecular Liquids.

[17]  Man-Hoe Kim,et al.  Influence of particle size on the effective thermal conductivity of nanofluids: A critical review , 2020 .

[18]  D. Toghraie,et al.  Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data , 2019, Physica A: Statistical Mechanics and its Applications.

[19]  D. Toghraie,et al.  Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data , 2019, Physica A: Statistical Mechanics and its Applications.

[20]  Muhammad Usman,et al.  Viscosity of hybrid nanofluids: A critical review , 2019, Thermal Science.

[21]  T. Ala‐Nissila,et al.  Correct interpretation of nanofluid convective heat transfer , 2018, International Journal of Thermal Sciences.

[22]  Tie-Yan Liu,et al.  LightGBM: A Highly Efficient Gradient Boosting Decision Tree , 2017, NIPS.

[23]  Arash Karimipour,et al.  An experimental study on rheological behavior of ethylene glycol based nanofluid: Proposing a new correlation as a function of silica concentration and temperature , 2017 .

[24]  Valan Arasu Amirtham,et al.  A review on preparation, characterization, properties and applications of nanofluids , 2016 .

[25]  K. Bashirnezhad,et al.  Viscosity of nanofluids: A review of recent experimental studies , 2016 .

[26]  P. C. Mishra,et al.  A brief review on viscosity of nanofluids , 2014, International Nano Letters.

[27]  Xinbin Ma,et al.  Ethylene glycol: properties, synthesis, and applications. , 2012, Chemical Society reviews.

[28]  Lixin Cheng,et al.  Nanofluid Heat Transfer Technologies , 2009 .

[29]  K. Leong,et al.  Investigations of thermal conductivity and viscosity of nanofluids , 2008 .

[30]  W. Loh,et al.  REGRESSION TREES WITH UNBIASED VARIABLE SELECTION AND INTERACTION DETECTION , 2002 .

[31]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[32]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .