Synthesis, Structure and Bonding of the Tungstaboranes [Cp*W(CO)2B3H8] and [(Cp*W)3(CO)2B4H7]

The structure and bonding of two novel tungstaboranes which were synthesized using diverse synthetic methods are described. (i) The room-temperature photolysis of [Cp*W(CO)3Me] with [BH3·SMe2] led to the isolation of the hydrogen-rich tungstaborane [Cp*W(CO)2B3H8] (1). Its geometry consists of an arachno butterfly core similar to tetraborane(10) and obeys the Wade-Mingos electron counting rules (n vertices, n + 3 skeletal electron pairs (seps)). (ii) Further, the tungstaborane [(Cp*W)3(μ-H)2(μ3-H)(μ-CO)2B4H4] (4) was isolated by thermolysis reaction of a tungsten intermediate, obtained by low temperature reaction of [Cp*WCl4] and [LiBH4·THF] with [Cr(CO)5·THF]. Compound 4 which seems to have formed by replacement of a BH unit in [(Cp*W)2B5H9] by the isoelectronic fragment {Cp*W(CO)2}, adopts an oblato-nido hexagonal-bipyramidal core (n vertices, n–1 seps). Both compounds were characterized using multinuclear NMR, IR spectroscopy, mass spectrometry as well as single crystal X-ray diffraction analysis. In addition, density functional theory (DFT) calculations were performed in order to elucidate their bonding and electronic structures.

[1]  Benjamin P Pritchard,et al.  New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community , 2019, J. Chem. Inf. Model..

[2]  V. Dorcet,et al.  Synthesis, Structures and Chemistry of the Metallaboranes of Group 4–9 with M2B5 Core Having a Cross Cluster M–M Bond , 2019, Inorganics.

[3]  T. Roisnel,et al.  Use of Single-Metal Fragments for Cluster Building: Synthesis, Structure, and Bonding of Heterometallaboranes. , 2019, Inorganic chemistry.

[4]  Sundargopal Ghosh,et al.  Combined Experimental and Theoretical Investigations of Group 6 Dimetallaboranes [(Cp*M)2B4H10] (M = Mo and W) , 2018, Organometallics.

[5]  E. Jemmis,et al.  Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2 }2 {μ-η2 :η2 -B2 H4 }] and [{Cp*M(CO)2 }2 B2 H2 M(CO)4 ], M=Mo,W. , 2018, Angewandte Chemie.

[6]  E. Jemmis,et al.  Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO) 2 } 2 {μ‐η 2 :η 2 ‐B 2 H 4 }] and [{Cp*M(CO) 2 } 2 B 2 H 2 M(CO) 4 ], M=Mo,W , 2018, Angewandte Chemie.

[7]  Sundargopal Ghosh,et al.  Synthesis, structure and chemistry of low-boron containing molybdaborane: Arachno-[Cp*Mo(CO)2B3H8] , 2015 .

[8]  D. Roy,et al.  Chemistry of diruthenium and dirhodium analogues of pentaborane(9): synthesis and characterization of metal n,s-heterocyclic carbene and B-agostic complexes. , 2015, Chemistry.

[9]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[10]  Zuowei Xie,et al.  Synthesis, structure, and reactivity of 13- and 14-vertex carboranes. , 2014, Accounts of chemical research.

[11]  R. King,et al.  Flattened deltahedral structures and bridging hydrogen atoms in hypoelectronic dimolybdaboranes and ditungstaboranes , 2014 .

[12]  Zuowei Xie,et al.  Recent progress in the chemistry of supercarboranes. , 2010, Chemistry, an Asian journal.

[13]  B. Varghese,et al.  Unusual organic chemistry of a metallaborane substrate: formation of a tantalaborane complex with a bridging acyl group (mu-eta(2)). , 2010, Inorganic chemistry.

[14]  S. Mobin,et al.  Chlorinated hypoelectronic dimetallaborane clusters: synthesis, characterization, and electronic structures of (eta(5)-C5Me5W)2B5H(n)Cl(m) (n = 7, m = 2 and n = 8, m = 1). , 2009, Inorganic chemistry.

[15]  G. Pramanik,et al.  An Efficient Route to Group 6 and 8 Metallaborane Compounds: Synthesis of arachno-[Cp*Fe(CO)B3H8] and closo-[(Cp*M)2B5H9] (M = Mo, W) , 2009 .

[16]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[17]  T. Fehlner,et al.  Expansion of iridaborane clusters by addition of monoborane. Novel metallaboranes and mechanistic detail. , 2008, Dalton transactions.

[18]  Malcolm L. H. Green,et al.  Synthesis and Interconversion of Some Small Ruthenaboranes: Reaction of a Ruthenium Borohydride with Pentaborane(9) to Form Larger Ruthenaboranes , 2007 .

[19]  J. Kennedy The Polyhedral Metallaboranes Part II. Metallaborane Clusters with Eight Vertices and More , 2007 .

[20]  G. Girolami,et al.  A new class of CVD precursors to metal borides: Cr(B3H8)2 and related octahydrotriborate complexes. , 2004, Journal of the American Chemical Society.

[21]  G. Rosair,et al.  Supraicosahedral (metalla) carboranes , 2003 .

[22]  N. N. Greenwood The concept of boranes as ligands , 2002 .

[23]  M. M. Balakrishnarajan,et al.  A unifying electron-counting rule for macropolyhedral boranes, metallaboranes, and metallocenes. , 2001, Journal of the American Chemical Society.

[24]  Lei,et al.  Symmetrical Scission of the Coordinated Tetraborane in , 2000, Angewandte Chemie.

[25]  T. Fehlner,et al.  Symmetrical Scission of the Coordinated Tetraborane in [(Cp*ReH2)2B4H4] on CO Addition and Reassociation of the Coordinated Diboranes on H2 Loss , 2000 .

[26]  T. Fehlner,et al.  Synthesis and Structure of the Metallaborane Cp*3(μ-H)W3B8H8 from the Thermolysis of Cp*H3WB4H8 (Cp* = η5-C5Me5). A Close-Packed 11-Atom Boron-Rich Cluster , 1998 .

[27]  T. Fehlner,et al.  Cluster Expansion Reactions of Group 6 Metallaboranes. Syntheses, Crystal Structures, and Spectroscopic Characterizations of (Cp*Cr)2B5H9, (Cp*Cr)2B4H8Fe(CO)3, (Cp*Cr)2B4H7Co(CO)3, and (Cp*Mo)2B5H9Fe(CO)3 , 1998 .

[28]  T. Fehlner,et al.  Directed Synthesis of Chromium and Molybdenum Metallaborane Clusters. Preparation and Characterization of (Cp*Cr)2B5H9, (Cp*Mo)2B5H9, and (Cp*MoCl)2B4H10 , 1997 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  T. Fehlner,et al.  Preparation and Structure of (Cp*Cr)2B4H8. An Unsaturated Metallaborane Cluster with an Unexpected Structure , 1994 .

[31]  G. Geoffroy,et al.  Reaction of Cp*MoCl4 and Cp*WCl4 with H2O, H2S, amines, and hydrazines. Formation of the trioxo anions [Cp*Mo(O)3]- and [Cp*W(O)3]- and the trisulfido anion [Cp*W(S)3]- , 1993 .

[32]  L. Sneddon,et al.  Syntheses and structural characterizations of hypho- and arachno-metalladithiaborane clusters , 1992 .

[33]  N. N. Greenwood,et al.  Organoruthenaborane Chemistry. VIII. Reactions of [{(η6‐C6Me6)RuCl2}2] and [{(η6‐MeC6H 4lPr)RuCl2}2] with Cs[arachno‐6‐SB9H12]: Isolation of ten‐, eleven‐, and twelve‐vertex ruthenathiaboranes and their characterization by N.M.R. spectroscopy , 1991 .

[34]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[35]  Malcolm L. H. Green,et al.  Niobium metallaboranes: A novel metallaborane analogue of pentaborane(11) , 1990 .

[36]  Malcolm L. H. Green,et al.  Transition metal mediated homologation of BH3·THF: synthesis and crystal structure of [WH3(PMe3)3B3H8] , 1988 .

[37]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[38]  R. Schrock,et al.  Simple routes to mono(.eta.5-pentamethylcyclopentadienyl) complexes of molybdenum(V) and tungsten(V) , 1985 .

[39]  D. Mingos Polyhedral skeletal electron pair approach , 1984 .

[40]  Roald Hoffmann,et al.  Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture) , 1982 .

[41]  S. Hildebrandt,et al.  Syntheses and properties of some neutral octahydrotriborate(1-) complexes of chromium-, manganese-, and iron-group metals , 1978 .

[42]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[43]  M. Hawthorne,et al.  Novel 13-vertex metallocarborane complexes formed by polyhedral expansion of 1,2-dicarba-closo-dodecaborane(12) (1,2-B10C2H12) , 1973 .

[44]  K. Wade Skeletal electron counting in cluster species. Applications to metal-hydrocarbon π-complexes , 1972 .

[45]  K. Wade Skeletal electron counting in cluster species. Some generalisations and predictions , 1972 .

[46]  M. Hawthorne,et al.  Novel 13-Vertex Metallocarborane Complexes Formed by Polyhedral Expansion of 1,2-B10C2H12. , 1972 .

[47]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[48]  Sundargopal Ghosh,et al.  Borane Polyhedra Beyond Icosahedron , 2021 .

[49]  A. Weller D-and f-block metallaboranes , 2007 .

[50]  T. Fehlner,et al.  Molecular Clusters: A Bridge to Solid-State Chemistry , 2007 .

[51]  T. Fehlner,et al.  The Reaction of Cp*ReH6, Cp* = C5Me5, with Monoborane to Yield a Novel Rhenaborane. Synthesis and Characterization of arachno-Cp*ReH3B3H8 , 2002 .

[52]  T. Fehlner,et al.  Synthesis of Mono- and Ditungstaboranes from Reaction of Cp*WCl4 and [Cp*WCl2]2 with BH3·thf or LiBH4 (Cp* = η5-C5Me5). Control of Reaction Pathway by Choice of Monoboron Reagent and Oxidation State of Metal Center , 1999 .

[53]  D. Mingos Structural and electronic paradigms in cluster chemistry , 1997 .

[54]  T. Fehlner,et al.  REACTIONS OF AN ELECTRONICALLY UNSATURATED CHROMABORANE. COORDINATION OF CS2 TO (ETA 5-C5ME5)2CR2B4H8 AND ITS HYDROBORATION TO A METHANEDITHIOLATO LIG AND , 1996 .

[55]  Malcolm L. H. Green,et al.  Reactivity of nido-[2-{Fe(η-C5H5)}B5H10] with some transition-metal hydride complexes , 1994 .

[56]  J. Kennedy,et al.  Novel rhodathiaborane complexes derived from [(PPh3)2RhSB9H10] , 1990 .

[57]  M. Beckett,et al.  Polyhedral phosphaborane chemistry: crystal and molecular structure of the diphenylphosphido-bridged arachno-decaboranyl cluster compound [PMePh3][6,9-µ-(PPh2)B10H12] , 1986 .

[58]  H. Alt,et al.  Photochemistry of alkyltricarbonyl(η5-cyclopentadienyl)tungsten (alkyl = Et, Prn, Pri, Bun, or CH2Ph), tricarbonyl(η5-cyclopentadienyl)(phenyl)tungsten, tricarbonyl(η5-pentamethylcyclopentadienyl)(n-propyl)tungsten, and tricarbonyl(η5-cyclopentadienyl)(ethyl)-molybdenum in gas matrices at 12 K and i , 1984 .

[59]  N. N. Greenwood,et al.  Metalloboranes and metal–boron bonding , 1974 .

[60]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[61]  H. C. Longuet-Higgins The structures of electron-deficient molecules , 1957 .