Application of DNA-based methods in forensic entomology.

A forensic entomological investigation can benefit from a variety of widely practiced molecular genotyping methods. The most commonly used is DNA-based specimen identification. Other applications include the identification of insect gut contents and the characterization of the population genetic structure of a forensically important insect species. The proper application of these procedures demands that the analyst be technically expert. However, one must also be aware of the extensive list of standards and expectations that many legal systems have developed for forensic DNA analysis. We summarize the DNA techniques that are currently used in, or have been proposed for, forensic entomology and review established genetic analyses from other scientific fields that address questions similar to those in forensic entomology. We describe how accepted standards for forensic DNA practice and method validation are likely to apply to insect evidence used in a death or other forensic entomological investigation.

[1]  S. Kalinowski,et al.  Population structure of Atlantic salmon (Salmo salar L.): a range‐wide perspective from microsatellite DNA variation , 2001, Molecular ecology.

[2]  S. Woodward,et al.  DNA sequence from Cretaceous period bone fragments. , 1994, Science.

[3]  K. Espelie,et al.  Forensic implications of biochemical differences among geographic populations of the black blow fly, Phormia regina (Meigen). , 1995, Journal of forensic sciences.

[4]  T. Torres,et al.  Development of new polymorphic microsatellite markers for the New World screw-worm Cochliomyia hominivorax (Diptera: Calliphoridae) , 2005 .

[5]  D. Harris,et al.  Can you bank on GenBank , 2003 .

[6]  J D Wells,et al.  A DNA-based approach to the identification of insect species used for postmortem interval estimation and partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. , 2000, Journal of forensic sciences.

[7]  J. M. Clery,et al.  Stability of prostate specific antigen (PSA), and subsequent Y-STR typing, of Lucilia (Phaenicia) sericata (Meigen) (Diptera: Calliphoridae) maggots reared from a simulated postmortem sexual assault. , 2001, Forensic science international.

[8]  T. Torres,et al.  Microsatellite markers for population genetic studies of the blowfly Chrysomya putoria (Diptera: Calliphoridae). , 2009, Memorias do Instituto Oswaldo Cruz.

[9]  J. Stevens,et al.  The evolution of ectoparasitism in the genus Lucilia (Diptera:Calliphoridae). , 1997, International journal for parasitology.

[10]  Genetic variability in mitochondrial DNA of the screwworm,Cochliomyia hominivorax (Diptera: Calliphoridae), from Brazil , 1995, Biochemical Genetics.

[11]  H. Kurahashi Probable origin of a synanthropic fly Chrysomya megacephala, in New Guinea (Diptera: Calliphoridae) , 1982 .

[12]  Jan Sauer,et al.  Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae) , 2004, International Journal of Legal Medicine.

[13]  G Luikart,et al.  New methods employing multilocus genotypes to select or exclude populations as origins of individuals. , 1999, Genetics.

[14]  F. Sperling,et al.  A DNA-based approach to the identification of insect species used for postmortem interval estimation. , 1994, Journal of forensic sciences.

[15]  Henry C. Lee,et al.  Advances in Fingerprint Technology, Second Edition , 2001 .

[16]  M. Bruford,et al.  Isolation of Microsatellite Markers in Animals , 1998 .

[17]  A. Domínguez,et al.  An evaluation of RAPD fragment reproducibility and nature , 1998, Molecular ecology.

[18]  G. Scoles,et al.  Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration. , 1993, Molecular and cellular probes.

[19]  S. Cole Is Fingerprint Identification Valid? Rhetorics of Reliability in Fingerprint Proponents’ Discourse , 2006 .

[20]  S. Skoda,et al.  Random amplified polymorphic DNA markers for discriminating Cochliomyia hominivorax from C. macellaria (Diptera: Calliphoridae) , 2002, Bulletin of Entomological Research.

[21]  D. Hartl,et al.  Mitochondrial pseudogenes: evolution's misplaced witnesses. , 2001, Trends in ecology & evolution.

[22]  J. Wells,et al.  Surface sterilization of a maggot using bleach does not interfere with mitochondrial DNA analysis of crop contents. , 2002, Journal of forensic sciences.

[23]  N. Gyllenstrand,et al.  Isolation and characterization of polymorphic microsatellite markers in the blowflies Lucilia illustris and Lucilia sericata , 2002 .

[24]  Daniel E. Ruzzante,et al.  A comparison of several measures of genetic distance and population structure with microsatellite data: bias and sampling variance , 1998 .

[25]  M. Benecke,et al.  A brief history of forensic entomology. , 2001, Forensic science international.

[26]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[27]  Jorma Piironen,et al.  The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  R. Coquoz,et al.  DNA typing for identification of some species of Calliphoridae. An interest in forensic entomology. , 1999, Forensic science international.

[29]  B. Budowle,et al.  Identification of host DNA by amplified fragment length polymorphism analysis: preliminary analysis of human crab louse (Anoplura: Pediculidae) excreta. , 1994, Journal of medical entomology.

[30]  D. Mebs,et al.  RFLP and sequence analysis of the cytochrome b gene of selected animals and man: methodology and forensic application , 1998, International Journal of Legal Medicine.

[31]  K. Marshall,et al.  Power of exclusion for parentage verification and probability of match for identity in American Kennel Club breeds using 17 canine microsatellite markers. , 2004, Animal genetics.

[32]  J. Stevens,et al.  Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species , 2002, Insect molecular biology.

[33]  K. Mumcuoglu,et al.  Use of Human Lice in Forensic Entomology , 2004, Journal of medical entomology.

[34]  R. Zatorre,et al.  Fisheries: Mislabelling of a depleted reef fish , 2004, Nature.

[35]  J. Stevens,et al.  Phylogenetic analysis of forensically important Lucilia flies based on cytochrome oxidase I sequence: a cautionary tale for forensic species determination , 2007, International Journal of Legal Medicine.

[36]  R. ffrench-Constant,et al.  Isolation and characterization of microsatellite markers from the endangered Karner blue butterfly Lycaeides melissa samuelis (Lepidoptera). , 2004, Hereditas.

[37]  C. Ames,et al.  The use of mitochondrial cytochrome oxidase I gene (COI) to differentiate two UK blowfly species -- Calliphora vicina and Calliphora vomitoria. , 2006, Forensic science international.

[38]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  L. Saravo,et al.  Genotyping of human DNA recovered from mosquitoes found on a crime scene , 2006 .

[40]  F. Sperling,et al.  Human and insect mitochondrial DNA analysis from maggots. , 2001, Journal of forensic sciences.

[41]  Bernard Greenberg,et al.  Developmental Temperature Responses of the Sibling Species Phaenicia sericata and Phaenicia pallescens , 1975 .

[42]  T. Torres,et al.  Characterization of polymorphic microsatellite markers for the blowfly Chrysomya albiceps (Diptera: Calliphoridae) , 2008, Molecular ecology resources.

[43]  S. Shiao,et al.  Molecular Identification of Forensically Important Blow Fly Species (Diptera: Calliphoridae) in Taiwan , 2004, Journal of medical entomology.

[44]  J. Wetton,et al.  An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. , 2004, Forensic science international.

[45]  J. Wells,et al.  Mitochondrial DNA and STR analyses of maggot crop contents: effect of specimen preservation technique. , 2004, Journal of forensic sciences.

[46]  F. Sperling,et al.  The current state of insect molecular systematics: a thriving Tower of Babel. , 2000, Annual review of entomology.

[47]  B. Crespi,et al.  Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers , 1994 .

[48]  J. Stevens The evolution of myiasis in blowflies (Calliphoridae). , 2003, International journal for parasitology.

[49]  H. Robertson,et al.  PCR-RFLP identification of Diptera (Calliphoridae, Muscidae and Sarcophagidae)--a generally applicable method. , 2003, Journal of Forensic Sciences.

[50]  Y. Aoki,et al.  Species identification of the forensically important flies in Iwate prefecture, Japan based on mitochondrial cytochrome oxidase gene subunit I (COI) sequences. , 2005, Legal medicine.

[51]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[52]  M. Kristensen Identification of sodium channel mutations in human head louse (Anoplura: Pediculidae) from Denmark. , 2005, Journal of medical entomology.

[53]  T. Unnasch,et al.  Identification of bloodmeals in haematophagous Diptera by cytochrome B heteroduplex analysis , 1999, Medical and veterinary entomology.

[54]  K. Hogendoorn,et al.  Molecular systematics of Australian carrion-breeding blowflies (Diptera : Calliphoridae) based on mitochondrial DNA , 2005 .

[55]  J. Stevens,et al.  Genetic relationships between blowflies (Calliphoridae) of forensic importance. , 2001, Forensic science international.

[56]  B. C. Pang,et al.  Identification of human semenogelin in membrane strip test as an alternative method for the detection of semen. , 2007, Forensic science international.

[57]  B. Greenberg,et al.  The Genus Chrysomya (Diptera: Calliphoridae) in the New World , 1984 .

[58]  J. Stephens,et al.  Genetic individualization of domestic cats using feline STR loci for forensic applications. , 1997, Journal of forensic sciences.

[59]  J. Wells,et al.  Validation of a DNA-based method for identifying Chrysomyinae (Diptera: Calliphoridae) used in a death investigation , 2006, International Journal of Legal Medicine.

[60]  S. Knudsen,et al.  Cleaning up gene databases , 1990, Nature.

[61]  Yang Wang,et al.  Genetic delineation of sibling species of the pest fruit fly Bactocera (Diptera: Tephritidae) using microsatellites. , 2003, Bulletin of entomological research.

[62]  K. Anslinger,et al.  Species identification by means of pyrosequencing the mitochondrial 12S rRNA gene , 2005, International Journal of Legal Medicine.

[63]  J. Stevens,et al.  Species, sub-species and hybrid populations of the blowflies Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae) , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  W. Takken,et al.  Extent of digestion affects the success of amplifying human DNA from blood meals of Anopheles gambiae (Diptera: Culicidae) , 2002, Bulletin of Entomological Research.

[65]  S. Gaudieri,et al.  Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between immature stages of some forensically important fly species (Diptera) in western Australia. , 2003, Forensic science international.

[66]  Kenneth G. V. Smith A manual of forensic entomology , 1988 .

[67]  M. T. Bottero,et al.  Identification of cow's milk in "buffalo" cheese by duplex polymerase chain reaction. , 2002, Journal of food protection.

[68]  R. Zehner,et al.  STR typing of human DNA from fly larvae fed on decomposing bodies. , 2004, Journal of forensic sciences.

[69]  J. Wells,et al.  Survey of the Genetic Diversity of Phormia regina (Diptera: Calliphoridae) Using Amplified Fragment Length Polymorphisms , 2009, Journal of medical entomology.

[70]  R. Coulson,et al.  Amplification and analysis of human DNA present in mosquito bloodmeals , 1990, Medical and veterinary entomology.

[71]  D. Foran,et al.  Aging Blow Fly Eggs Using Gene Expression: A Feasibility Study , 2007, Journal of forensic sciences.

[72]  Dianmo Li,et al.  Polymorphic microsatellite loci for the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and some remarks on their isolation , 2003 .

[73]  Allen L. Szalanski,et al.  Mitochondrial DNA variation in screwworm , 1996, Medical and veterinary entomology.

[74]  M. L. Goff,et al.  Forensic entomology in criminal investigations. , 1992, Annual review of entomology.

[75]  F. Sperling,et al.  DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). , 2001, Forensic science international.

[76]  Adel S. Kamal Comparative Study of Thirteen Species of Sarcosaprophagous Calliphoridae and Sarcophagidae (Diptera) I. Bionomics , 1958 .

[77]  Randolph Bb,et al.  Practice guideline for forensic pathology. Members of the Forensic Pathology Committee, College of American Pathologists. , 1998 .

[78]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[79]  D. J. Thompson,et al.  Population structure and the impact of regional and local habitat isolation upon levels of genetic diversity of the endangered damselfly Coenagrion mercuriale (Odonata: Zygoptera) , 2006 .

[80]  T. Pape,et al.  DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera). , 2001, Journal of forensic sciences.

[81]  Bruce Budowle,et al.  Recommendations for animal DNA forensic and identity testing , 2005, International Journal of Legal Medicine.

[82]  E. Walker,et al.  A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae , 2005, Malaria Journal.

[83]  F. Rousset,et al.  Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta) , 1998, Molecular ecology.

[84]  K. Pueschel,et al.  Use of PCR-RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. , 2003, Forensic science international.

[85]  S. Donnellan,et al.  The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. , 2001, Forensic science international.

[86]  H. Kurahashi,et al.  Geographic variation in the incidence of pupal diapause in Asian and Oceanian species of the flesh fly Boettcherisca (Diptera: Sarcophagidae) , 1989 .

[87]  A. Spidle,et al.  Fine-scale population structure in Atlantic salmon from Maine's Penobscot River drainage , 2001, Conservation Genetics.

[88]  F. Cipriano,et al.  PREDICTING NUCLEAR GENE COALESCENCE FROM MITOCHONDRIAL DATA: THE THREE-TIMES RULE , 2001 .

[89]  P. Ready,et al.  Old World screwworm fly, Chrysomya bezziana, occurs as two geographical races , 2001, Medical and veterinary entomology.

[90]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[91]  David L. Faigman Is Science Different for Lawyers? , 2002, Science.

[92]  Nishanth Marthandan,et al.  Organism identification using a genome sequence-independent universal microarray probe set. , 2004, BioTechniques.

[93]  W Parson,et al.  Analysis of artificially degraded DNA using STRs and SNPs--results of a collaborative European (EDNAP) exercise. , 2006, Forensic science international.

[94]  D. J. Funk,et al.  Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA , 2003 .

[95]  J. A. DiZinno,et al.  Isolation, amplification, and sequencing of human mitochondrial DNA obtained from human crab louse, Pthirus pubis (L.), blood meals. , 1998, Journal of forensic sciences.

[96]  M. Benecke Random amplified polymorphic DNA (RAPD) typing of necrophageous insects (Diptera, Coleoptera) in criminal forensic studies: validation and use in practice. , 1998, Forensic science international.

[97]  K. Norris The Bionomics of Blow Flies , 1965 .

[98]  Mark R. Wilson,et al.  Forensics and mitochondrial DNA: applications, debates, and foundations. , 2003, Annual review of genomics and human genetics (Print).

[99]  M. Collins,et al.  Quality assurance in age estimation based on aspartic acid racemisation , 2000, International Journal of Legal Medicine.

[100]  Carlo P. Campobasso,et al.  Best practice in forensic entomology—standards and guidelines , 2007, International Journal of Legal Medicine.

[101]  W. Lord,et al.  Collection and Preservation of Forensically Important Entomological Materials , 1983 .

[102]  M. Dowton,et al.  Identification of forensically important Chrysomya (Diptera: Calliphoridae) species using the second ribosomal internal transcribed spacer (ITS2). , 2008, Forensic science international.

[103]  D. Hall blowflies of North America , 1948 .

[104]  Ryszard Pawlowski,et al.  Validation of cytochrome b sequence analysis as a method of species identification. , 2003, Journal of forensic sciences.

[105]  D. Turnbull,et al.  Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA , 1999, Nature Genetics.

[106]  J. Avise Phylogeography: The History and Formation of Species , 2000 .

[107]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[108]  M. Cronin,et al.  MITOCHONDRIAL DNA IN WILDLIFE FORENSIC SCIENCE: SPECIES IDENTIFICATION OF TISSUES , 1991 .

[109]  M. Navajas,et al.  Microsatellite sequences are under‐represented in two mite genomes , 1998, Insect molecular biology.

[110]  J. Vian,et al.  Partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. , 2000, Journal of forensic sciences.

[111]  Henry C. Lee,et al.  Advances in Fingerprint Technology , 1991 .

[112]  T. Burke,et al.  Isolation of Psoroptes scab mite microsatellite markers (Acari: Psoroptidae) , 2003 .

[113]  Hans-Jürgen Bandelt,et al.  A call for mtDNA data quality control in forensic science. , 2004, Forensic science international.

[114]  M. Bonizzoni,et al.  Microsatellite polymorphism in the Mediterranean fruit fly, Ceratitis capitata , 2000, Insect molecular biology.

[115]  L. Alamalakala,et al.  Amplified fragment length polymorphism used for inter- and intraspecific differentiation of screwworms (Diptera: Calliphoridae). , 2009, Bulletin of entomological research.

[116]  K. Will,et al.  Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification , 2004, Cladistics : the international journal of the Willi Hennig Society.

[117]  Kevin J. Emerson,et al.  Wolbachia and genetic variability in the birdnest blowfly Protocalliphora sialia , 2003, Molecular ecology.

[118]  M. Villet,et al.  Molecular identification of some forensically important blowflies of southern Africa and Australia , 2003, Medical and veterinary entomology.

[119]  C. Campobasso,et al.  Forensic genetic analysis of insect gut contents. , 2005, The American journal of forensic medicine and pathology.

[120]  Ashim K. Datta Advances in Fingerprint Technology , 2001 .

[121]  Mark R. Wilson,et al.  Mitochondrial DNA sequencing of beetle larvae (Nitidulidae: Omosita) recovered from human bone. , 2002, Journal of forensic sciences.

[122]  L. Lamotte,et al.  Estimating the Postmortem Interval , 2009, Forensic Entomology.

[123]  F. Jiggins,et al.  Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts , 2005, Proceedings of the Royal Society B: Biological Sciences.

[124]  H. Zischler,et al.  Detecting dinosaur DNA. , 1995, Science.

[125]  M. Steinlechner,et al.  Species identification by means of the cytochrome b gene , 2000, International Journal of Legal Medicine.

[126]  Stephanie Manel,et al.  Assignment methods: matching biological questions with appropriate techniques. , 2005, Trends in ecology & evolution.