Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences

The dichotomous model of "drivers" and "passengers" in cancer posits that only a few mutations in a tumor strongly affect its progression, with the remaining ones being inconsequential. Here, we leveraged the comprehensive variant dataset from the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) project to demonstrate that-in addition to the dichotomy of high- and low-impact variants-there is a third group of medium-impact putative passengers. Moreover, we also found that molecular impact correlates with subclonal architecture (i.e., early versus late mutations), and different signatures encode for mutations with divergent impact. Furthermore, we adapted an additive-effects model from complex-trait studies to show that the aggregated effect of putative passengers, including undetected weak drivers, provides significant additional power (∼12% additive variance) for predicting cancerous phenotypes, beyond PCAWG-identified driver mutations. Finally, this framework allowed us to estimate the frequency of potential weak-driver mutations in PCAWG samples lacking any well-characterized driver alterations.

[1]  P. Hanawalt,et al.  Transcription-coupled DNA repair: two decades of progress and surprises , 2008, Nature Reviews Molecular Cell Biology.

[2]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[3]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[4]  P. Visscher,et al.  Estimating missing heritability for disease from genome-wide association studies. , 2011, American journal of human genetics.

[5]  Trevor J Pugh,et al.  Recurrent and functional regulatory mutations in breast cancer , 2017, Nature.

[6]  Patricia P. Chan,et al.  tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes , 2016, Nucleic Acids Res..

[7]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[8]  E. Mroz,et al.  MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. , 2013, Oral oncology.

[9]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[10]  Chris Sander,et al.  Emerging landscape of oncogenic signatures across human cancers , 2013, Nature Genetics.

[11]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[12]  David J. Arenillas,et al.  JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles , 2015, Nucleic Acids Res..

[13]  Bert Vogelstein,et al.  The Path to Cancer --Three Strikes and You're Out. , 2015, The New England journal of medicine.

[14]  Mary Goldman,et al.  Genomic basis for RNA alterations in cancer , 2020, Nature.

[15]  S. Batzoglou,et al.  Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.

[16]  M. Gerstein,et al.  Cancer genomics: Less is more in the hunt for driver mutations , 2017, Nature.

[17]  Li Ding,et al.  Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics , 2018, Cell.

[18]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[19]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[20]  P. Hanawalt,et al.  Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair , 2016, Cell.

[21]  Mark Gerstein,et al.  Cyclic and multilevel causation in evolutionary processes , 2019, Biology & Philosophy.

[22]  Patrick McGillivray,et al.  Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes , 2017, Nature Communications.

[23]  Nuno A. Fonseca,et al.  Analyses of non-coding somatic drivers in 2,658 cancer whole genomes , 2020, Nature.

[24]  M. Gerstein,et al.  SVFX: a machine learning framework to quantify the pathogenicity of structural variants , 2019, Genome Biology.

[25]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[26]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[27]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[28]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[29]  M. Gerstein,et al.  Role of non-coding sequence variants in cancer , 2016, Nature Reviews Genetics.

[30]  David Haussler,et al.  ENCODE Data in the UCSC Genome Browser: year 5 update , 2012, Nucleic Acids Res..

[31]  Holger Karas,et al.  TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..

[32]  The Icgctcga Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes , 2020 .

[33]  Shamil R. Sunyaev,et al.  Impact of deleterious passenger mutations on cancer progression , 2012, Proceedings of the National Academy of Sciences.

[34]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[35]  Shankar Vembu,et al.  Inferring clonal evolution of tumors from single nucleotide somatic mutations , 2012, BMC Bioinformatics.

[36]  R. Eils,et al.  Impact of cancer mutational signatures on transcription factor motifs in the human genome , 2019, BMC Medical Genomics.

[37]  M. Snyder,et al.  Recurrent Somatic Mutations in Regulatory Regions of Human Cancer Genomes , 2015, Nature Genetics.

[38]  D. Geschwind,et al.  Human Disease Variation in the Light of Population Genomics , 2019, Cell.

[39]  S. Dhanasekaran,et al.  The landscape of long noncoding RNAs in the human transcriptome , 2015, Nature Genetics.

[40]  Gabor T. Marth,et al.  Integrative Annotation of Variants from 1092 Humans: Application to Cancer Genomics , 2013, Science.

[41]  Erik N. Bergstrom,et al.  The repertoire of mutational signatures in human cancer , 2018, bioRxiv.

[42]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[43]  Sam Griffiths-Jones,et al.  miRBase: the microRNA sequence database. , 2006, Methods in molecular biology.

[44]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[45]  D. Hartl,et al.  Principles of population genetics , 1981 .

[46]  Serena Nik-Zainal,et al.  Mechanisms underlying mutational signatures in human cancers , 2014, Nature Reviews Genetics.

[47]  Kevin Y. Yip,et al.  FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer , 2014, Genome Biology.

[48]  Manolis Kellis,et al.  Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments , 2013, Nucleic acids research.

[49]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[50]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[51]  F. Markowetz,et al.  The evolutionary history of 2,658 cancers , 2017, bioRxiv.

[52]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[53]  Laurent Farinelli,et al.  Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. , 2010, Genome research.

[54]  Nuno A. Fonseca,et al.  Patterns of somatic structural variation in human cancer genomes , 2020, Nature.

[55]  I. Tomlinson,et al.  The mini-driver model of polygenic cancer evolution , 2015, Nature Reviews Cancer.

[56]  L. Furlong Human diseases through the lens of network biology. , 2013, Trends in genetics : TIG.

[57]  E. Lander,et al.  Identification and characterization of essential genes in the human genome , 2015, Science.

[58]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[59]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[60]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.