Visual Tracking via Particle Filtering on the Affine Group

We present a particle filtering algorithm for visual tracking, in which the state equations for the object motion evolve on the two-dimensional affine group. We first formulate, in a coordinate-invariant and geometrically meaningful way, particle filtering on the affine group that allows for combined state—covariance estimation. Measurement likelihoods are also calculated from the image covariance descriptors using incremental principal geodesic analysis, a generalization of principal component analysis to curved spaces. Comparative visual tracking studies demonstrate the increased robustness of our tracking algorithm.

[1]  Rama Chellappa,et al.  Visual tracking and recognition using appearance-adaptive models in particle filters , 2004, IEEE Transactions on Image Processing.

[2]  Frank Chongwoo Park,et al.  Geometric Direct Search Algorithms for Image Registration , 2007, IEEE Transactions on Image Processing.

[3]  Xiaoqin Zhang,et al.  Robust Visual Tracking Based on an Effective Appearance Model , 2008, ECCV.

[4]  David J. Kriegman,et al.  Visual tracking and recognition using probabilistic appearance manifolds , 2005, Comput. Vis. Image Underst..

[5]  Patrick Pérez,et al.  Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.

[6]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[7]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[8]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[9]  Xiaoqin Zhang,et al.  Robust Visual Tracking Based on Incremental Tensor Subspace Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[10]  Ming-Hsuan Yang,et al.  Incremental Learning for Visual Tracking , 2004, NIPS.

[11]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  David Suter,et al.  Adaptive Object Tracking Based on an Effective Appearance Filter , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Fatih Murat Porikli,et al.  Covariance Tracking using Model Update Based on Lie Algebra , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[16]  João M. F. Xavier,et al.  On the Generalization of AR Processes To Riemannian Manifolds , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[17]  Fatih Murat Porikli,et al.  Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[19]  Shaohua Kevin Zhou,et al.  Probabilistic Visual Tracking via Robust Template Matching and Incremental Subspace Update , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[20]  Kitagawa Self organizing Time Series Model , 2001 .

[21]  Stefano Soatto,et al.  Monte Carlo filtering on Lie groups , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[22]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[23]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[24]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[25]  U. Grenander,et al.  Jump–diffusion Markov processes on orthogonal groups for object pose estimation , 2002 .

[26]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[27]  Frank Chongwoo Park,et al.  Particle Filtering on the Euclidean Group , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[28]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[29]  Xiaoqin Zhang,et al.  Visual tracking via incremental Log-Euclidean Riemannian subspace learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  F. Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, CVPR 2004.

[31]  Anuj Srivastava,et al.  Bayesian filtering for tracking pose and location of rigid targets , 2000, SPIE Defense + Commercial Sensing.

[32]  F. Park,et al.  Visual tracking via particle filtering on the affine group , 2008, ICIA 2008.

[33]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[34]  Rashid Ansari,et al.  Kernel particle filter for visual tracking , 2005, IEEE Signal Processing Letters.

[35]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[36]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[37]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[38]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[39]  Yong Rui,et al.  Better proposal distributions: object tracking using unscented particle filter , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.