Aza-Claisen Rearrangement: Synthesis of 5′-branched 5′-aminothymidines†

The syntheses of both diastereoisomers of 5′-ethyl-substituted thymidine dimers, the (5′R)- and (5′S)-configurated 33a and 33b respectively, in which the natural phosphodiester linkage is replaced by an amide group (C(3′)-CH2CONH-CH(5′)(Et)), arc described. Their fully protected derivatives 35a and 35b, respectively, are suitable for incorporation into antisense oligonucleotides. Unexpectedly, an attempted PdII-catalysed aza-Claisen rearrangement of trichloroacetimidate 7 provided the diastereoisomerically pure cyclopropane derivative 17, whose structure was confirmed by X-ray analysis.

[1]  S. Crooke,et al.  Progress in antisense therapeutics , 1996, Medicinal research reviews.

[2]  Guangyi Wang,et al.  5′-C-branched thymidines: Synthesis, stereochemistry, and incorporation into oligodeoxynucleotides , 1996 .

[3]  G. Guillerm,et al.  Synthesis of uracil polyoxin C from uridine , 1996 .

[4]  G. Stork,et al.  Modified ollgonucleotides. Effect of 4 vs 5-atom chimeric internucleoside linkages on duplex stability , 1995 .

[5]  S. Knapp Synthesis of Complex Nucleoside Antibiotics , 1995 .

[6]  M. Slater,et al.  An unusually facile [3,3]-sigmatropic rearrangement in a stereospecific synthesis of novel 2′,3′-dideoxynucleoside precursors , 1995 .

[7]  T. Caulfield,et al.  5'-Methyl-DNA-A New Oligonucleotide Analog: Synthesis and Biochemical Properties , 1995 .

[8]  P. Merino,et al.  Total synthesis of thymine polyoxin C , 1994 .

[9]  E. J. Thomas,et al.  Asymmetric α-aminoacid synthesis using [3.3] rearrangement of allylic trifluoroacetimidates: Synthesis of thymine polyoxin C , 1993 .

[10]  A. Doherty,et al.  A study of the 3,3-sigmatropic rearrangement of chiral trichloroacetamidic esters , 1993 .

[11]  C. K. Chu,et al.  Nucleosides and Nucleotides as Antitumor and Antiviral Agents , 1993, Springer US.

[12]  A. Barrett,et al.  Phenylthio)nitromethane in the total synthesis of polyoxin C , 1990 .

[13]  Y. Auberson,et al.  Total, Asymmetric-Synthesis of Deoxypolyoxin-C , 1990 .

[14]  Keisuke Suzuki,et al.  4-O-Benzyl-23-O-isopropylidene-L-threose: A useful building block for stereoselective synthesis of monosaccharides , 1990 .

[15]  S. Ogawa,et al.  Claisen Rearrangements of 5,6-Dideoxy-1,2-O-isopropylidene-α-D-xylo- and α-D-ribo-hept-5-eno-1,4-furanoses with Triethyl Orthoacetate , 1989 .

[16]  J. Park,et al.  Glycosyl α-aminoacids via stereocontrolled buildup of a penaldic acid equivalent. An asymmetric synthesis of thymine polyoxin C , 1989 .

[17]  L. Overman Mercury(II)‐ and Palladium(II)‐Catalyzed [3,3]‐Sigmatropic Rearrangements [New Synthetic Methods (46)] , 1984 .

[18]  H. Mosher,et al.  Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and .alpha.-methoxy-.alpha.-trifluoromethylphenylacetate (MTPA) esters , 1973 .

[19]  M. Palamareva,et al.  Heterocyclen mit Isochinolin‐Gerüst aus β‐Aminosäuren, 1 Synthese, Konfiguration und Konformation von (±)‐6.7‐Dialkoxy‐2‐methyl‐3‐aryl‐4‐methoxycarbonyl‐(und hydroxymethyl)‐1.2.3.4‐tetrahydro‐isochinolinen , 1970 .

[20]  H. Gilman,et al.  2,2,2-Trifluoroethylamine and 2,2,2-Trifluorodiazoethane , 1943 .