Self-Organized Specialization and Controlled Emergence in Organic Computing Systems

ing from the industrial problem we study so called Emergent Sorting Networks. The basic components of Emergent Sorting Networks are router agents. Each router agent a ∈ A has an input and an output buffer with n, respectively m, positions. We denote the input buffer positions by x1, . . . , xn, and the output buffer positions by y1, . . . , ym. A buffer position can store exactly one object of k different types t1, . . . , tk. Router agents are connected to form a network topology by associating output buffer positions with input buffer positions of other agents. This is done with respect to the following conditions: (1) All input/output buffer positions must be involved in connections. (2) A one-to-one relationship between associated output and input buffer positions must hold. (3) The connections must be such that the resulting network is acyclic. Note that the set A of agents contains two special agents: the so called inflow agent serves to feed the network with incoming objects and the outflow agent produces the output of the network. Router agents can pick up objects from their input buffer positions and move them to a free output buffer position (if any). At each time step, in case the input position of the inflow agent is empty it is filled with an object of random type. Thereafter, in random order all agents apply their local routing rules. Within a time step every object can be moved at most once. The network starts empty. In Figure 2.1 the network structure that was originally proposed in Brueckner (2000) is shown. Circles represent routing agents, buffer positions are depicted as squares and arrows indicate the possible transportation direction of objects. White buffer positions

[1]  Franco Zambonelli,et al.  Case studies for self-organization in computer science , 2006, J. Syst. Archit..

[2]  Jörg Hähner,et al.  Towards an Organic Network Control System , 2009, ATC.

[3]  Marco Dorigo,et al.  From Fireflies to Fault-Tolerant Swarms of Robots , 2009, IEEE Transactions on Evolutionary Computation.

[4]  Bruce Edmonds,et al.  The insufficiency of formal design methods - the necessity of an experimental approach for the understanding and control of complex MAS , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[5]  K. Cooke,et al.  Discrete delay, distributed delay and stability switches , 1982 .

[6]  Vito Trianni,et al.  Evolutionary Swarm Robotics - Evolving Self-Organising Behaviours in Groups of Autonomous Robots , 2008, Studies in Computational Intelligence.

[7]  Larry Bull,et al.  Searching for Glider Guns in Cellular Automata: Exploring Evolutionary and Other Techniques , 2007, Artificial Evolution.

[8]  Hartmut Schmeck,et al.  Towards a quantitative notion of self-organisation , 2007, 2007 IEEE Congress on Evolutionary Computation.

[9]  Sven A. Brueckner,et al.  RETURN FROM THE ANT SYNTHETIC ECOSYSTEMS FOR MANUFACTURING CONTROL , 2000 .

[10]  Kenneth A. De Jong,et al.  Using genetic algorithms for concept learning , 1993, Machine Learning.

[11]  E. Bonabeau,et al.  Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Roland Siegwart,et al.  Building Mixed Societies of Animals and Robots , 2005 .

[13]  Jason D. Bakos,et al.  Predictive Load Balancing for Interconnected FPGAs , 2006, 2006 International Conference on Field Programmable Logic and Applications.

[14]  G. Hardin,et al.  The Tragedy of the Commons , 1968, Green Planet Blues.

[15]  Ran Wolff,et al.  Distributed Data Mining in Peer-to-Peer Networks , 2006, IEEE Internet Computing.

[16]  Bernd Kleinjohann,et al.  Learning Action Sequences Through Imitation in Behavior Based Architectures , 2005, ARCS.

[17]  Scott Hauck,et al.  Reconfigurable computing: a survey of systems and software , 2002, CSUR.

[18]  Jeffrey C. Mogul,et al.  Emergent (mis)behavior vs. complex software systems , 2006, EuroSys.

[19]  D. Grünbaum Schooling as a strategy for taxis in a noisy environment , 1998, Evolutionary Ecology.

[20]  Lawrence O. Hall,et al.  Kernel Based Fuzzy Ant Clustering with Partition Validity , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[21]  Leandro Nunes de Castro,et al.  Towards Improving Clustering Ants: An Adaptive Ant Clustering Algorithm , 2005, Informatica.

[22]  D. Sumpter,et al.  Consensus Decision Making by Fish , 2008, Current Biology.

[23]  Naoki Wakamiya,et al.  Reaction-Diffusion Based Topology Self-Organization for Periodic Data Gathering in Wireless Sensor Networks , 2008, 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems.

[24]  Winfried Lamersdorf,et al.  Systematically Engineering Self-Organizing Systems: The SodekoVS Approach , 2009, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[25]  Alexander Scheidler,et al.  Modelling Ant Brood Tending Behavior with Cellular Automata , 2005, International Conference on Computational Science.

[26]  Nicolas Monmarché,et al.  AntClass: discovery of clusters in numeric data by an hybridization of an ant colony with the Kmeans , 1999 .

[27]  Ana L. C. Bazzan,et al.  A swarm based approach to adapt the structural dimension of agents' organizations , 2005 .

[28]  John J. Grefenstette,et al.  A Coevolutionary Approach to Learning Sequential Decision Rules , 1995, ICGA.

[29]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[30]  E. Bonabeau,et al.  Spatial patterns in ant colonies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Wolfgang Rosenstiel,et al.  Evaluation of the Learning Classifier System XCS for SoC run-time control , 2008, GI Jahrestagung.

[32]  Dan Yamins,et al.  Towards a theory of "local to global" in distributed multi-agent systems (I) , 2005, AAMAS '05.

[33]  Andreas König,et al.  Towards organic sensing systems – Dynamically reconfigurable mixed-signal electronics for adaptive sensing in organic computing systems , 2006 .

[34]  K. K. Ramakrishnan,et al.  The Ethernet capture effect: analysis and solution , 1994, Proceedings of 19th Conference on Local Computer Networks.

[35]  Mary Shaw,et al.  Engineering Self-Adaptive Systems through Feedback Loops , 2009, Software Engineering for Self-Adaptive Systems.

[36]  Marco Dorigo,et al.  Ant colony optimization and its application to adaptive routing in telecommunication networks , 2004 .

[37]  A. G. Nicolas,et al.  Immediate and Latent Effects of Carbon Dioxide on Insects , 1989 .

[38]  Daniel Merkle,et al.  Stability and performance of ant queue inspired task partitioning methods , 2008, Theory in Biosciences.

[39]  Gauthier Picard,et al.  ADELFE: A Methodology for Adaptive Multi-agent Systems Engineering , 2002, ESAW.

[40]  Carl Anderson,et al.  Task Partitioning in Insect Societies. II. Use of Queueing Delay Information in Recruitment , 1999, The American Naturalist.

[41]  I. René J. A. te Boekhorst,et al.  Pattern Formation in Homogeneous and Heterogeneous Swarms: Differences Between Versatile and Specialized Agents , 2007, 2007 IEEE Symposium on Artificial Life.

[42]  Rolf Hoffmann,et al.  On the Effectiveness of Evolution Compared to Time-Consuming Full Search of Optimal 6-State Automata , 2009, EuroGP.

[43]  Parag M. Kanade,et al.  Fuzzy ants as a clustering concept , 2003, 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003.

[44]  Chris Cornelis,et al.  Fuzzy Ant Based Clustering , 2004, ANTS Workshop.

[45]  David Sinreich,et al.  An architectural blueprint for autonomic computing , 2006 .

[46]  Bruce Edmonds,et al.  Using the Experimental Method to Produce Reliable Self-Organised Systems , 2004, Engineering Self-Organising Systems.

[47]  Larry Bull,et al.  On Evolving Social Systems: Communication, Speciation and Symbiogenesis , 1999, Comput. Math. Organ. Theory.

[48]  Christian Blum,et al.  Emergent Sorting in Networks of Router Agents , 2008, ANTS Conference.

[49]  Julia Handl,et al.  Improved Ant-Based Clustering and Sorting , 2002, PPSN.

[50]  Mohamed Medhat Gaber,et al.  Resource-aware Very Fast K-Means for ubiquitous data stream mining , 2005 .

[51]  O. Kittithreerapronchai,et al.  Do ants paint trucks better than chickens? Markets versus response thresholds for distributed dynamic scheduling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[52]  Marco Dorigo,et al.  On the Performance of Ant-based Clustering , 2003, HIS.

[53]  Stephen F. Smith,et al.  Wasp-like Agents for Distributed Factory Coordination , 2004, Autonomous Agents and Multi-Agent Systems.

[54]  Tom De Wolf,et al.  Using Equation-Free Macroscopic Analysis for Studying Self-Organising Emergent Solutions , 2008, 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems.

[55]  Marco Dorigo,et al.  Strategies for the Increased Robustness of Ant-Based Clustering , 2003, Engineering Self-Organising Systems.

[56]  Vince Darley Emergent Phenomena and Complexity , 2004 .

[57]  Bernhard Sendhoff,et al.  Genesis of Organic Computing Systems: Coupling Evolution and Learning , 2008, Organic Computing.

[58]  Steven Johnson,et al.  Emergence: The Connected Lives of Ants, Brains, Cities, and Software , 2001 .

[59]  Hillol Kargupta,et al.  Approximate Distributed K-Means Clustering over a Peer-to-Peer Network , 2009, IEEE Transactions on Knowledge and Data Engineering.

[60]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[61]  Peter A. Corning,et al.  The re-emergence of "emergence": A venerable concept in search of a theory , 2002, Complex..

[62]  Nicolas Monmarché,et al.  Visual Clustering with Artificial Ants Colonies , 2003, KES.

[63]  Mark A. Bedau,et al.  Emergence : contemporary readings in philosophy and science , 2008 .

[64]  Devon Dawson,et al.  Improving Performance in Size-Constrained Extended Classifier Systems , 2003, GECCO.

[65]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[66]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[67]  Daniel Merkle,et al.  Using Decentralized Clustering for Task Allocation in Networks with Reconfigurable Helper Units , 2006, IWSOS/EuroNGI.

[68]  Gilles Venturini,et al.  AntTree: a new model for clustering with artificial ants , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[69]  Wilfried Elmenreich,et al.  Firefly Clock Synchronization in an 802.15.4 Wireless Network , 2009, EURASIP J. Embed. Syst..

[70]  Hartmut Schmeck,et al.  Using Organic Computing to Control Bunching Effects , 2008, ARCS.

[71]  Sean Luke,et al.  Cooperative Multi-Agent Learning: The State of the Art , 2005, Autonomous Agents and Multi-Agent Systems.

[72]  Bernhard Sick,et al.  Functional Knowledge Exchange Within an Intelligent Distributed System , 2007, ARCS.

[73]  Daniel Merkle,et al.  Congestion Control in Ant Like Moving Agent Systems , 2008, BICC.

[74]  J. Fewell,et al.  Models of division of labor in social insects. , 2001, Annual review of entomology.

[75]  Hillol Kargupta,et al.  K-Means Clustering Over a Large, Dynamic Network , 2006, SDM.

[76]  Mauro Birattari,et al.  Interference Reduction through Task Partitioning in a Robotic Swarm - Or: "Don't you Step on My Blue Suede Shoes!" , 2009, ICINCO-RA.

[77]  Hartmut Schmeck,et al.  Towards a generic observer/controller architecture for Organic Computing , 2006, GI Jahrestagung.

[78]  Jürgen Branke,et al.  Evolutionary Design of Emergent Behavior , 2008, Organic Computing.

[79]  Michael J. B. Krieger,et al.  The call of duty: Self-organised task allocation in a population of up to twelve mobile robots , 2000, Robotics Auton. Syst..

[80]  Andrea Omicini,et al.  Design Patterns for Self-Organizing Multiagent Systems , 2007 .

[81]  Leonardo Garrido,et al.  Effects of Inter-agent Communication in Ant-Based Clustering Algorithms: A Case Study on Communication Policies in Swarm Systems , 2005, MICAI.

[82]  Jörg Hähner,et al.  Creating collaboration patterns in multi-agent systems with generic observer/controller architectures , 2008, Autonomics.

[83]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[84]  Marie-Pierre Gleizes,et al.  Engineering Systems Which Generate Emergent Functionalities , 2008, EEMMAS.

[85]  Michael Schreckenberg,et al.  A cellular automaton model for freeway traffic , 1992 .

[86]  Peter Tiño,et al.  Evaluation of Adaptive Nature Inspired Task Allocation Against Alternate Decentralised Multiagent Strategies , 2004, PPSN.

[87]  Julia Handl,et al.  Ant-based and swarm-based clustering , 2007, Swarm Intelligence.

[88]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[89]  William A. Tozier,et al.  The Brueckner network: an immobile sorting swarm , 2006, GECCO.

[90]  Wolfgang Müller,et al.  Classifying Documents by Distributed P2P Clustering , 2003, GI Jahrestagung.

[91]  Tom De Wolf,et al.  Emergence Versus Self-Organisation: Different Concepts but Promising When Combined , 2004, Engineering Self-Organising Systems.

[92]  J. Fromm Types and Forms of Emergence , 2005, nlin/0506028.

[93]  Christian Müller-Schloer,et al.  Emergence in Organic Computing Systems: Discussion of a Controversial Concept , 2006, ATC.

[94]  Laurent Magnin,et al.  Elements about the Emergence Issue: A Survey of Emergence Definitions , 2006, Complexus.

[95]  Ajith Abraham,et al.  Web usage mining using artificial ant colony clustering and linear genetic programming , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[96]  Adam D. Myers,et al.  Dynamic load-balancing on multi-FPGA systems: a case study , 2007 .

[97]  Marie-Pierre Gleizes,et al.  Self-Organisation and Emergence in MAS: An Overview , 2006, Informatica.

[98]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[99]  Jörg Hähner,et al.  Organic traffic light control for urban road networks , 2009, Int. J. Auton. Adapt. Commun. Syst..

[100]  Laurent Keller,et al.  Ant-like task allocation and recruitment in cooperative robots , 2000, Nature.

[101]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[102]  Michael Zapf,et al.  Offline Emergence Engineering For Agent Societies , 2007 .

[103]  Daniel Merkle,et al.  Modeling Ant Brood ending Patterns with Cellular Automata , 2006, J. Cell. Autom..

[104]  Daut Daman,et al.  Survey on Real-Time Crowds Simulation , 2008, Edutainment.

[105]  H. Edelsbrunner,et al.  Efficient algorithms for agglomerative hierarchical clustering methods , 1984 .

[106]  Christian Blum,et al.  Self-synchronized duty-cycling for mobile sensor networks with energy harvesting capabilities: A swarm intelligence study , 2009, 2009 IEEE Swarm Intelligence Symposium.

[107]  Ana B Sendova-Franks,et al.  Random walk models of worker sorting in ant colonies. , 2002, Journal of theoretical biology.

[108]  Tomoyuki Hiroyasu,et al.  Multiobjective clustering with automatic k-determination for large-scale data , 2007, GECCO '07.

[109]  Daniel Merkle,et al.  Swarm Controlled Emergence - Designing an Anti-Clustering Ant System , 2007, 2007 IEEE Swarm Intelligence Symposium.

[110]  Guy Theraulaz,et al.  Response Threshold Reinforcement and Division of Labor in Insect Societies , 1998 .

[111]  Daniel Merkle,et al.  Dynamic Decentralized Packet Clustering in Networks , 2005, EvoWorkshops.

[112]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.

[113]  Christian Müller-Schloer,et al.  Quantitative Emergence , 2006, 2006 IEEE Mountain Workshop on Adaptive and Learning Systems.

[114]  Wolfgang Banzhaf Self-organizing Systems. , 2003 .

[115]  Hartmut Schmeck,et al.  Organic Control of Traffic Lights , 2008, ATC.

[116]  Jan Sudeikat,et al.  Toward Systemic MAS Development: Enforcing Decentralized Self-organization by Composition and Refinement of Archetype Dynamics , 2008, EEMMAS.

[117]  Thomas Hofmann,et al.  Map-Reduce for Machine Learning on Multicore , 2007 .

[118]  E. Bonabeau,et al.  Fixed response thresholds and the regulation of division of labor in insect societies , 1998 .

[119]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[120]  M. Bedau Weak Emergence * , 1997 .

[121]  Gunther Auer,et al.  Biologically Inspired Synchronization for Wireless Networks , 2007, Advances in Biologically Inspired Information Systems.

[122]  J. Buck Synchronous Rhythmic Flashing of Fireflies , 1938, The Quarterly Review of Biology.

[123]  Jochen Fromm,et al.  On Engineering and Emergence , 2006, nlin/0601002.

[124]  Daniel Merkle,et al.  Self-adaptive Worker-Helper Systems with Self-Organized Task Allocation , 2008, Organic Computing.

[125]  Howard GutowitzESPCI,et al.  Complexity-Seeking Ants , 1994 .

[126]  Baldo Faieta,et al.  Diversity and adaptation in populations of clustering ants , 1994 .

[127]  Daniel Merkle,et al.  Decentralized packet clustering in router-based networks , 2005, Int. J. Found. Comput. Sci..

[128]  Mark Klein,et al.  The Dynamics of Collaborative Design: Insights from Complex Systems and Negotiation Research , 2003, Concurr. Eng. Res. Appl..

[129]  Stewart W. Wilson ZCS: A Zeroth Level Classifier System , 1994, Evolutionary Computation.

[130]  Stiliyan Kalitzin,et al.  Emergent complex patterns in autonomous distributed systems: mechanisms for attention recovery and relation to models of clinical epilepsy , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[131]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[132]  Daniel Merkle,et al.  Decentralized packet clustering in networks , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[133]  Thomas A. Runkler Ant colony optimization of clustering models , 2005, Int. J. Intell. Syst..

[134]  R. Rivest Learning Decision Lists , 1987, Machine Learning.

[135]  Carlos Gershenson,et al.  Design and Control of Self-organizing Systems , 2007 .

[136]  D. Floreano,et al.  Division of labour and colony efficiency in social insects: effects of interactions between genetic architecture, colony kin structure and rate of perturbations , 2006, Proceedings of the Royal Society B: Biological Sciences.

[137]  Victor Lesser,et al.  Social Pathologies of Adaptive Agents , 2002 .

[138]  Inderjit S. Dhillon,et al.  A Data-Clustering Algorithm on Distributed Memory Multiprocessors , 1999, Large-Scale Parallel Data Mining.

[139]  Dario Floreano,et al.  Ant-based swarming with positionless micro air vehicles for communication relay , 2008, Swarm Intelligence.

[140]  Joseph L. Hellerstein,et al.  Reducing the Cost of IT Operations - Is Automation Always the Answer? , 2005, HotOS.

[141]  Mohamed Batouche,et al.  On Solving Edge Detection by Emergence , 2006, IEA/AIE.

[142]  Harry Goldingay,et al.  The Influence of Memory in a Threshold Model for Distributed Task Assignment , 2008, 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems.

[143]  Stephen F. Smith,et al.  Distributed Coordination of Resources via Wasp-Like Agents , 2002, WRAC.

[144]  G. De Soete,et al.  Clustering and Classification , 2019, Data-Driven Science and Engineering.

[145]  Hartmut Schmeck,et al.  Measurement and Control of Self-organised Behaviour in Robot Swarms , 2007, ARCS.

[146]  Rolf P. Würtz,et al.  Self-organized Evaluation of Dynamic Hand Gestures for Sign Language Recognition , 2008, Organic Computing.

[147]  Mauro Birattari,et al.  An Insect-Based Algorithm for the Dynamic Task Allocation Problem , 2005, Künstliche Intell..

[148]  M. Rupp,et al.  Design Space Exploration for Real-Time Reconfigurable Computing , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[149]  Hartmut Schmeck,et al.  Organic Computing – Addressing Complexity by Controlled Self-Organization , 2006, Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (isola 2006).

[150]  Jeffrey O. Kephart,et al.  The Vision of Autonomic Computing , 2003, Computer.

[151]  Daniel Merkle,et al.  Self-Organized Task Allocation for Service Tasks in Computing Systems with Reconfigurable Components , 2008, J. Math. Model. Algorithms.

[152]  Christian Müller-Schloer,et al.  Organic computing: on the feasibility of controlled emergence , 2004, CODES+ISSS '04.

[153]  Anne-Marie Kermarrec,et al.  Epidemic information dissemination in distributed systems , 2004, Computer.

[154]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[155]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[156]  F. Ratnieks,et al.  Task Partitioning in Insect Societies. I. Effect of Colony Size on Queueing Delay and Colony Ergonomic Efficiency , 1999, The American Naturalist.

[157]  Irene Giardina,et al.  Collective behavior in animal groups: Theoretical models and empirical studies , 2008, HFSP journal.

[158]  Tom De Wolf,et al.  Towards a Methodology for Engineering Self-Organising Emergent Systems , 2005, SOAS.

[159]  G B Blanchard,et al.  Gaseous templates in ant nests. , 2000, Journal of theoretical biology.

[160]  Maja J. Mataric,et al.  Adaptive division of labor in large-scale minimalist multi-robot systems , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[161]  Eyke Hüllermeier,et al.  Online clustering of parallel data streams , 2006, Data Knowl. Eng..

[162]  Nicolas Monmarché,et al.  A new clustering algorithm based on the chemical recognition system of ants , 2002 .

[163]  Kenneth A. De Jong,et al.  Learning Concept Classification Rules Using Genetic Algorithms , 1991, IJCAI.

[164]  Matthias Werner,et al.  On the Definitions of Self-Managing and Self-Organizing Systems , 2011 .

[165]  Jian Pei,et al.  Continuous K-Means Monitoring with Low Reporting Cost in Sensor Networks , 2009, IEEE Transactions on Knowledge and Data Engineering.

[166]  Marco Dorigo,et al.  Division of labor in a group of robots inspired by ants' foraging behavior , 2006, TAAS.

[167]  Donald O. Walter,et al.  Self-Organizing Systems , 1987, Life Science Monographs.

[168]  李幼升,et al.  Ph , 1989 .

[169]  A.H. Channa,et al.  Texture Segmentation using Ant Tree Clustering , 2006, 2006 IEEE International Conference on Engineering of Intelligent Systems.

[170]  Hermann de Meer,et al.  On Autonomy and Emergence in Self-Organizing Systems , 2008, IWSOS.

[171]  Niklas Luhmann,et al.  Die Gesellschaft der Gesellschaft , 1997 .

[172]  Martin Middendorf,et al.  Evolved cooperation and emergent communication structures in learning classifier based organic computing systems , 2009, GECCO '09.

[173]  Hartmut Schmeck,et al.  Improving XCS Performance by Distribution , 2008, SEAL.

[174]  Dietmar Fey,et al.  Evaluating the evolvability of emergent agents with different numbers of states , 2009, GECCO '09.

[175]  C. Anderson Self-Organization in Relation to Several Similar Concepts: Are the Boundaries to Self-Organization Indistinct? , 2002, The Biological Bulletin.

[176]  Guy Theraulaz,et al.  Task differentiation in Polistes wasp colonies: a model for self-organizing groups of robots , 1991 .

[177]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[178]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[179]  Stewart W. Wilson,et al.  An Incremental Multiplexer Problem and Its Uses in Classifier System Research , 2001, IWLCS.

[180]  Georgi Gaydadjiev,et al.  Online Task Scheduling for the FPGA-Based Partially Reconfigurable Systems , 2009, ARC.

[181]  Daniel Merkle,et al.  Self-organized task allocation for computing systems with reconfigurable components , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[182]  Jaume Bacardit Peñarroya Pittsburgh genetic-based machine learning in the data mining era: representations, generalization, and run-time , 2004 .

[183]  Thorsten Schöler,et al.  First steps towards organic computing systems: monitoring an adaptive protocol stack with a fuzzy classifier system , 2005, CF '05.

[184]  Franco Zambonelli,et al.  Methodologies and Software Engineering for Agent Systems , 2004, Multiagent Systems, Artificial Societies, and Simulated Organizations.

[185]  Márk Jelasity,et al.  T-Man: Gossip-based fast overlay topology construction , 2009, Comput. Networks.

[186]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[187]  Nicolas Monmarché,et al.  AntClust: Ant Clustering and Web Usage Mining , 2003, GECCO.

[188]  Leonardo Garrido,et al.  An hybridization of an ant-based clustering algorithm with growing neural gas networks for classification tasks , 2005, SAC '05.

[189]  L. Correia,et al.  Self-organised systems: fundamental properties , 2006 .

[190]  Daniel Merkle,et al.  International Journal of Intelligent Computing and Cybernetics A decentralization approach for swarm intelligence algorithms in networks applied to multi swarm PSO , 2016 .

[191]  Chris Cornelis,et al.  Clustering web search results using fuzzy ants , 2007, Int. J. Intell. Syst..

[192]  Thorsten Schöler,et al.  An Observer/Controller Architecture for Adaptive Reconfigurable Stacks , 2005, ARCS.

[193]  Alcherio Martinoli,et al.  Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems , 2002, AAMAS '02.

[194]  Tucker R. Balch,et al.  Hierarchic Social Entropy: An Information Theoretic Measure of Robot Group Diversity , 2000, Auton. Robots.

[195]  Gianluca Palermo,et al.  An Evolutionary Approach to Area-Time Optimization of FPGA designs , 2007, 2007 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation.

[196]  Martin Middendorf,et al.  Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance , 2010, NICSO.

[197]  Christian Müller-Schloer,et al.  Emergence in Technical Systems (Emergenz in technischen Systemen) , 2005, it Inf. Technol..

[198]  Marco Dorigo,et al.  Ant-Based Clustering and Topographic Mapping , 2006, Artificial Life.

[199]  Stewart W. Wilson,et al.  Noname manuscript No. (will be inserted by the editor) Learning Classifier Systems: A Survey , 2022 .

[200]  Juan Julián Merelo Guervós,et al.  Self-Organized Stigmergic Document Maps: Environment as a Mechanism for Context Learning , 2004, ArXiv.

[201]  Jean-Louis Deneubourg,et al.  The dynamics of collective sorting robot-like ants and ant-like robots , 1991 .

[202]  Jianhong Wu,et al.  Data clustering - theory, algorithms, and applications , 2007 .

[203]  D. Daloze,et al.  “Pheromones and Animal Behaviour” - Communication by Smell and Taste” , 2003, CHEMOECOLOGY.

[204]  John Symons,et al.  Computational Models of Emergent Properties , 2008, Minds and Machines.

[205]  Larry Bull On coevolutionary genetic algorithms , 2001, Soft Comput..

[206]  Wilfried Elmenreich,et al.  Evolutionary Methods in Self-organizing System Design , 2009, GEM.

[207]  M. Beekman,et al.  Honeybee swarms: how do scouts guide a swarm of uninformed bees? , 2005, Animal Behaviour.

[208]  Martin V. Butz,et al.  Data Mining in Learning Classifier Systems: Comparing XCS with GAssist , 2005, IWLCS.

[209]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[210]  Daniel Merkle,et al.  Learning from House-Hunting Ants: Collective Decision-Making in Organic Computing Systems , 2008, ANTS Conference.

[211]  Tom De Wolf,et al.  Design Patterns for Decentralised Coordination in Self-organising Emergent Systems , 2006, ESOA.

[212]  Mark Klein,et al.  Handling emergent resource use oscillations , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[213]  Marco Platzner,et al.  Toward Self-adaptive Embedded Systems: Multi-objective Hardware Evolution , 2007, ARCS.

[215]  Jochen Fromm,et al.  Ten Questions about Emergence , 2005, nlin/0509049.

[216]  Gilbert L. Peterson,et al.  Ant clustering with locally weighted ant perception and diversified memory , 2008, Swarm Intelligence.