A recursive, numerically stable, and efficient simulation algorithm for serial robots with flexible links

A methodology for the formulation of dynamic equations of motion of a serial flexible-link manipulator using the decoupled natural orthogonal complement (DeNOC) matrices, introduced elsewhere for rigid bodies, is presented in this paper. First, the Euler Lagrange (EL) equations of motion of the system are written. Then using the equivalence of EL and Newton–Euler (NE) equations, and the DeNOC matrices associated with the velocity constraints of the connecting bodies, the analytical and recursive expressions for the matrices and vectors appearing in the independent dynamic equations of motion are obtained. The analytical expressions allow one to obtain a recursive forward dynamics algorithm not only for rigid body manipulators, as reported earlier, but also for the flexible body manipulators. The proposed simulation algorithm for the flexible link robots is shown to be computationally more efficient and numerically more stable than other algorithms present in the literature. Simulations, using the proposed algorithm, for a two link arm with each link flexible and a Space Shuttle Remote Manipulator System (SSRMS) are presented. Numerical stability aspects of the algorithms are investigated using various criteria, namely, the zero eigenvalue phenomenon, energy drift method, etc. Numerical example of a SSRMS is taken up to show the efficiency and stability of the proposed algorithm. Physical interpretations of many terms associated with dynamic equations of flexible links, namely, the mass matrix of a composite flexible body, inertia wrench of a flexible link, etc. are also presented.

[1]  T. R. Kane,et al.  Dynamics of a cantilever beam attached to a moving base , 1987 .

[2]  Just a second , we ’ d like to go first : A first-order discretized formulation for structural dynamics , .

[3]  Abhinandan Jain,et al.  Multibody Mass Matrix Sensitivity Analysis Using Spatial Operators , 2003 .

[4]  Wayne J. Book,et al.  Symbolic modeling of flexible manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[5]  Werner Schiehlen,et al.  Recent developments in multibody dynamics , 2005 .

[6]  W. Thomson Theory of vibration with applications , 1965 .

[7]  E. Haug,et al.  A recursive formulation for flexible multibody dynamics, Part I: open-loop systems , 1988 .

[8]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[9]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[10]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[11]  Niels Leergaard Pedersen,et al.  On the Formulation of Flexible Multibody Systems with Constant Mass Matrix , 1997 .

[12]  W. Book Recursive Lagrangian Dynamics of Flexible Manipulator Arms , 1984 .

[13]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[14]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[15]  C. Chevallereau,et al.  Modelling and control of flexible robots , 1991 .

[16]  Olivier A. Bauchau,et al.  On the Modeling of Prismatic Joints in Flexible Multi-Body Systems ⁄ , 2000 .

[17]  R. Nadira,et al.  A Finite Element/Lagrange Approach to Modeling Lightweight Flexible Manipulators , 1986 .

[18]  Subir Kumar Saha,et al.  Simulation of Industrial Manipulators Based on the UDUT Decomposition of Inertia Matrix , 2003 .

[19]  S. K. Ider,et al.  Stability analysis of constraints in flexible multibody systems dynamics , 1990 .

[20]  R. Nadira,et al.  Erratum: “A Finite Element/Lagrange Approach to Modeling Lightweight Flexible Manipulators” (Journal of Dynamic Systems, Measurement, and Control, 1986, 108, pp. 198–205) , 1986 .

[21]  D.K. Pai,et al.  The formulation stiffness of forward dynamics algorithms and implications for robot simulation , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[22]  O. Bauchau Computational Schemes for Flexible, Nonlinear Multi-Body Systems , 1998 .

[23]  Abhinandan Jain,et al.  RECURSIVE FLEXIBLE MULTIBODY SYSTEM DYNAMICS USING SPATIAL OPERATORS , 1992 .

[24]  J. Ambrósio,et al.  Stabilization Methods for the Integration of DAE in the Presence of Redundant Constraints , 2003 .

[25]  Tamer M. Wasfy,et al.  Computational strategies for flexible multibody systems , 2003 .

[26]  Dinesh K. Pai,et al.  Forward Dynamics, Elimination Methods, and Formulation Stiffness in Robot Simulation , 1997, Int. J. Robotics Res..

[27]  Parviz E. Nikravesh,et al.  An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems , 1985 .

[28]  Ronald L. Huston,et al.  Dynamics of Constrained Multibody Systems , 1984 .

[29]  E. J. Haug,et al.  Computer aided kinematics and dynamics of mechanical systems. Vol. 1: basic methods , 1989 .

[30]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[31]  Inna Sharf,et al.  Simulation of flexible-link manipulators: basis functions and nonlinear terms in the motion equations , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[32]  Alessandro De Luca,et al.  Closed-form dynamic model of planar multilink lightweight robots , 1991, IEEE Trans. Syst. Man Cybern..

[33]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[34]  J. Angeles,et al.  The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement , 1988 .

[35]  Peter Eberhard,et al.  Computational Dynamics of Multibody Systems: History, Formalisms, and Applications , 2006 .

[36]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[37]  Ahmed A. Shabana,et al.  Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .

[38]  Hyun-Sik Shim,et al.  Stability and four-posture control for nonholonomic mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[39]  J. Angeles,et al.  Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement , 1991 .

[40]  Dinh Van Huynh,et al.  Algebra and Its Applications , 2006 .

[42]  C.-J. Li,et al.  Systematic methods for efficient modeling and dynamics computation of flexible robot manipulators , 1993, IEEE Trans. Syst. Man Cybern..

[43]  Subir Kumar Saha,et al.  Analytical Expression for the Inverted Inertia Matrix of Serial Robots , 1999, Int. J. Robotics Res..

[44]  I. Sharf Nonlinear Strain Measures, Shape Functions and Beam Elements for Dynamics of Flexible Beams , 1999 .

[45]  Subir Kumar Saha,et al.  A recursive, numerically stable, and efficient simulation algorithm for serial robots , 2007 .

[46]  R. E. Ellis,et al.  Numerical stability of forward-dynamics algorithms , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[47]  A. Shabana Dynamics of Flexible Bodies Using Generalized Newton-Euler Equations , 1990 .

[48]  A. G. Greenhill Kinematics and Dynamics , 1888, Nature.

[49]  S. Saha Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices , 1999 .

[50]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[51]  Subir Kumar Saha,et al.  A decomposition of the manipulator inertia matrix , 1997, IEEE Trans. Robotics Autom..

[52]  Olivier A. Bauchau,et al.  Stability Analysis of Complex Multibody Systems , 2005 .

[53]  Michael Valášek,et al.  Kinematics and Dynamics of Machinery , 1996 .

[54]  Ashitava Ghosal,et al.  Comparison of the Assumed Modes and Finite Element Models for Flexible Multilink Manipulators , 1995, Int. J. Robotics Res..