M5 from M2
暂无分享,去创建一个
[1] Michel Goze,et al. n-Lie algebras , 2009, 0909.1419.
[2] Andreas Gustavsson. Algebraic structures on parallel M2-branes , 2007, 0709.1260.
[3] Houman Safaai,et al. Exploring Pure Spinor String Theory on AdS_4 x CP^3 , 2008, 0808.1051.
[4] A. Morozov. On the problem of multiple M2 branes , 2008 .
[5] P. Ho,et al. M5-brane in three-form flux and multiple M2-branes , 2008, 0805.2898.
[6] G. Papadopoulos. On the structure of k-Lie algebras , 2008, 0804.3567.
[7] J. Gauntlett,et al. Constraining Maximally Supersymmetric Membrane Actions , 2008, 0804.3078.
[8] Kimyeong M. Lee,et al. Mass-deformed Bagger-Lambert theory and its BPS objects , 2008, 0804.2519.
[9] G. Papadopoulos. M2-branes, 3-Lie algebras and Plucker relations , 2008, 0804.2662.
[10] F. Passerini,et al. Matrix theory of type IIB plane wave from membranes , 2008, 0804.2186.
[11] P. Ho,et al. Lie 3-Algebra and Multiple M2-branes , 2008, 0804.2110.
[12] E. Bergshoeff,et al. Multiple M2-branes and the embedding tensor , 2008, 0804.2201.
[13] Christoffer Petersson,et al. On relating multiple M2 and D2-branes , 2008, 0804.1784.
[14] M. Raamsdonk,et al. M2-branes on M-folds , 2008, 0804.1256.
[15] D. Tong,et al. Membranes on an orbifold. , 2008, Physical review letters.
[16] M. Raamsdonk. Comments on the Bagger-Lambert theory and multiple M2-branes , 2008, 0803.3803.
[17] D. Berman,et al. Aspects of multiple membranes , 2008, 0803.3611.
[18] Sunil Mukhi,et al. D2 to D2 , 2008, 0806.1639.
[19] Andreas Gustavsson. Selfdual strings and loop space Nahm equations , 2008, 0802.3456.
[20] J. Bagger,et al. Comments on multiple M2-branes , 2007, 0712.3738.
[21] Neil Lambert,et al. Gauge symmetry and supersymmetry of multiple M2-branes , 2007, 0711.0955.
[22] D. Berman. M-theory branes and their interactions , 2007, 0710.1707.
[23] L. Takhtajan. Nambu mechanics , based on the deformation theory , path integral formulation and on , 1993, hep-th/9301111.
[24] P. Ho,et al. A toy model of open membrane field theory in constant 3-form flux , 2007, hep-th/0701130.
[25] J. Bagger,et al. Modeling multiple M2-branes , 2006, hep-th/0611108.
[26] J. Harvey,et al. The M2-M5 brane system and a generalized Nahm's equation , 2004, hep-th/0412310.
[27] M. Bandres,et al. Superconformal Chern-Simons theories , 2004, hep-th/0411077.
[28] A. Restuccia,et al. M5-brane as a Nambu–Poisson geometry of a multi-D1-brane theory , 2003, hep-th/0306094.
[29] Y. Kawamura. Cubic Matrices, Generalized Spin Algebra and Uncertainty Relation(Particles and Fields) , 2003, hep-th/0304149.
[30] C. Zachos,et al. Classical and quantum Nambu mechanics , 2002, hep-th/0212267.
[31] Y. Kawamura. Cubic Matrix, Nambu Mechanics and Beyond , 2002, hep-th/0207054.
[32] Yoshiharu Kawaniura. Cubic matrices, generalized spin algebra and uncertainty relation , 2003 .
[33] G. Papadopoulos,et al. Plucker-type relations for orthogonal planes , 2002, math/0211170.
[34] T. Curtright,et al. Deformation quantization of superintegrable systems and Nambu mechanics , 2002, hep-th/0205063.
[35] B. Pioline. Comments on the topological open membrane , 2002, hep-th/0201257.
[36] Y. Matsuo,et al. Volume preserving diffeomorphism and noncommutative branes , 2000, hep-th/0010040.
[37] D. Minic,et al. On the quantization of Nambu brackets , 1999, hep-th/9906248.
[38] N. Sasakura,et al. Open membranes in a constant C field background and noncommutative boundary strings , 2000, hep-th/0005123.
[39] J. Schaar,et al. A Noncommutative M theory five-brane , 2000, hep-th/0005026.
[40] E. Witten,et al. String theory and noncommutative geometry , 1999, hep-th/9908142.
[41] C. Chu,et al. Constrained quantization of open string in background B field and noncommutative D-brane , 1999, hep-th/9906192.
[42] V. Schomerus. D-branes and Deformation Quantization , 1999, hep-th/9903205.
[43] I. Vaisman. A survey on Nambu-Poisson brackets. , 1999, math/9901047.
[44] C. Chu,et al. Non-commutative open string and D-brane , 1998, hep-th/9812219.
[45] Nobutada Nakanishi. On Nambu–Poisson Manifolds , 1998 .
[46] P. Michor,et al. n-ary Lie and Associative Algebras , 1998, math/9801087.
[47] G. Marmo,et al. The local structure of n-Poisson and n-Jacobi manifolds☆ , 1997 .
[48] D. D. Diego,et al. Dynamics of generalized Poisson and Nambu–Poisson brackets , 1997 .
[49] J. M. Izquierdo,et al. On the generalizations of Poisson structures , 1997 .
[50] J. M. Izquierdo,et al. LETTER TO THE EDITOR: On the higher-order generalizations of Poisson structures , 1997, hep-th/9703019.
[51] J. Schwarz,et al. World volume action of the M theory five-brane , 1997, hep-th/9701166.
[52] I. Bandos,et al. Covariant Action for the Super-Five-Brane of M Theory , 1997, hep-th/9701149.
[53] D. Sorokin,et al. Covariant action for a D = 11 five-brane with the chiral field , 1997, hep-th/9701037.
[54] L. Susskind,et al. M theory as a matrix model: A Conjecture , 1996, hep-th/9610043.
[55] A. Tsuchiya,et al. A Large N reduced model as superstring , 1996, hep-th/9612115.
[56] J. A. Azcárraga,et al. THE SCHOUTEN-NIJENHUIS BRACKET, COHOMOLOGY AND GENERALIZED POISSON STRUCTURES , 1996, hep-th/9605067.
[57] Philippe Gautheron. Some remarks concerning Nambu mechanics , 1996 .
[58] M. Flato,et al. Deformation quantization and Nambu Mechanics , 1996, hep-th/9602016.
[59] J. Hoppe. On M-Algebras, the Quantisation of Nambu-Mechanics, and Volume Preserving Diffeomorphisms , 1996, hep-th/9602020.
[60] J. A. Azcárraga,et al. New generalized Poisson structures , 1996, q-alg/9601007.
[61] Kaplan,et al. Zero modes for the D=11 membrane and five-brane. , 1995, Physical review. D, Particles and fields.
[62] P. Guha,et al. On decomposability of Nambu-Poisson tensor. , 1996 .
[63] P. Hanlon,et al. On lie k-algebras , 1995 .
[64] C. Callan,et al. Worldbrane actions for string solitons , 1991 .
[65] H. Nicolai,et al. On the quantum mechanics of supermembranes , 1988 .
[66] J. Stasheff,et al. The Lie algebra structure of tangent cohomology and deformation theory , 1985 .
[67] Paul Adrien Maurice Dirac,et al. Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.