M5 from M2

Recently an action based on Lie 3-algebras was proposed to describe M2-branes. We study the case of infinite dimensional Lie 3-algebras based on the Nambu-Poisson structure of three dimensional manifolds. We show that the model contains self-dual 2-form gauge fields in 6 dimensions, and the result may be interpreted as the M5-brane world-volume action.

[1]  Michel Goze,et al.  n-Lie algebras , 2009, 0909.1419.

[2]  Andreas Gustavsson Algebraic structures on parallel M2-branes , 2007, 0709.1260.

[3]  Houman Safaai,et al.  Exploring Pure Spinor String Theory on AdS_4 x CP^3 , 2008, 0808.1051.

[4]  A. Morozov On the problem of multiple M2 branes , 2008 .

[5]  P. Ho,et al.  M5-brane in three-form flux and multiple M2-branes , 2008, 0805.2898.

[6]  G. Papadopoulos On the structure of k-Lie algebras , 2008, 0804.3567.

[7]  J. Gauntlett,et al.  Constraining Maximally Supersymmetric Membrane Actions , 2008, 0804.3078.

[8]  Kimyeong M. Lee,et al.  Mass-deformed Bagger-Lambert theory and its BPS objects , 2008, 0804.2519.

[9]  G. Papadopoulos M2-branes, 3-Lie algebras and Plucker relations , 2008, 0804.2662.

[10]  F. Passerini,et al.  Matrix theory of type IIB plane wave from membranes , 2008, 0804.2186.

[11]  P. Ho,et al.  Lie 3-Algebra and Multiple M2-branes , 2008, 0804.2110.

[12]  E. Bergshoeff,et al.  Multiple M2-branes and the embedding tensor , 2008, 0804.2201.

[13]  Christoffer Petersson,et al.  On relating multiple M2 and D2-branes , 2008, 0804.1784.

[14]  M. Raamsdonk,et al.  M2-branes on M-folds , 2008, 0804.1256.

[15]  D. Tong,et al.  Membranes on an orbifold. , 2008, Physical review letters.

[16]  M. Raamsdonk Comments on the Bagger-Lambert theory and multiple M2-branes , 2008, 0803.3803.

[17]  D. Berman,et al.  Aspects of multiple membranes , 2008, 0803.3611.

[18]  Sunil Mukhi,et al.  D2 to D2 , 2008, 0806.1639.

[19]  Andreas Gustavsson Selfdual strings and loop space Nahm equations , 2008, 0802.3456.

[20]  J. Bagger,et al.  Comments on multiple M2-branes , 2007, 0712.3738.

[21]  Neil Lambert,et al.  Gauge symmetry and supersymmetry of multiple M2-branes , 2007, 0711.0955.

[22]  D. Berman M-theory branes and their interactions , 2007, 0710.1707.

[23]  L. Takhtajan Nambu mechanics , based on the deformation theory , path integral formulation and on , 1993, hep-th/9301111.

[24]  P. Ho,et al.  A toy model of open membrane field theory in constant 3-form flux , 2007, hep-th/0701130.

[25]  J. Bagger,et al.  Modeling multiple M2-branes , 2006, hep-th/0611108.

[26]  J. Harvey,et al.  The M2-M5 brane system and a generalized Nahm's equation , 2004, hep-th/0412310.

[27]  M. Bandres,et al.  Superconformal Chern-Simons theories , 2004, hep-th/0411077.

[28]  A. Restuccia,et al.  M5-brane as a Nambu–Poisson geometry of a multi-D1-brane theory , 2003, hep-th/0306094.

[29]  Y. Kawamura Cubic Matrices, Generalized Spin Algebra and Uncertainty Relation(Particles and Fields) , 2003, hep-th/0304149.

[30]  C. Zachos,et al.  Classical and quantum Nambu mechanics , 2002, hep-th/0212267.

[31]  Y. Kawamura Cubic Matrix, Nambu Mechanics and Beyond , 2002, hep-th/0207054.

[32]  Yoshiharu Kawaniura Cubic matrices, generalized spin algebra and uncertainty relation , 2003 .

[33]  G. Papadopoulos,et al.  Plucker-type relations for orthogonal planes , 2002, math/0211170.

[34]  T. Curtright,et al.  Deformation quantization of superintegrable systems and Nambu mechanics , 2002, hep-th/0205063.

[35]  B. Pioline Comments on the topological open membrane , 2002, hep-th/0201257.

[36]  Y. Matsuo,et al.  Volume preserving diffeomorphism and noncommutative branes , 2000, hep-th/0010040.

[37]  D. Minic,et al.  On the quantization of Nambu brackets , 1999, hep-th/9906248.

[38]  N. Sasakura,et al.  Open membranes in a constant C field background and noncommutative boundary strings , 2000, hep-th/0005123.

[39]  J. Schaar,et al.  A Noncommutative M theory five-brane , 2000, hep-th/0005026.

[40]  E. Witten,et al.  String theory and noncommutative geometry , 1999, hep-th/9908142.

[41]  C. Chu,et al.  Constrained quantization of open string in background B field and noncommutative D-brane , 1999, hep-th/9906192.

[42]  V. Schomerus D-branes and Deformation Quantization , 1999, hep-th/9903205.

[43]  I. Vaisman A survey on Nambu-Poisson brackets. , 1999, math/9901047.

[44]  C. Chu,et al.  Non-commutative open string and D-brane , 1998, hep-th/9812219.

[45]  Nobutada Nakanishi On Nambu–Poisson Manifolds , 1998 .

[46]  P. Michor,et al.  n-ary Lie and Associative Algebras , 1998, math/9801087.

[47]  G. Marmo,et al.  The local structure of n-Poisson and n-Jacobi manifolds☆ , 1997 .

[48]  D. D. Diego,et al.  Dynamics of generalized Poisson and Nambu–Poisson brackets , 1997 .

[49]  J. M. Izquierdo,et al.  On the generalizations of Poisson structures , 1997 .

[50]  J. M. Izquierdo,et al.  LETTER TO THE EDITOR: On the higher-order generalizations of Poisson structures , 1997, hep-th/9703019.

[51]  J. Schwarz,et al.  World volume action of the M theory five-brane , 1997, hep-th/9701166.

[52]  I. Bandos,et al.  Covariant Action for the Super-Five-Brane of M Theory , 1997, hep-th/9701149.

[53]  D. Sorokin,et al.  Covariant action for a D = 11 five-brane with the chiral field , 1997, hep-th/9701037.

[54]  L. Susskind,et al.  M theory as a matrix model: A Conjecture , 1996, hep-th/9610043.

[55]  A. Tsuchiya,et al.  A Large N reduced model as superstring , 1996, hep-th/9612115.

[56]  J. A. Azcárraga,et al.  THE SCHOUTEN-NIJENHUIS BRACKET, COHOMOLOGY AND GENERALIZED POISSON STRUCTURES , 1996, hep-th/9605067.

[57]  Philippe Gautheron Some remarks concerning Nambu mechanics , 1996 .

[58]  M. Flato,et al.  Deformation quantization and Nambu Mechanics , 1996, hep-th/9602016.

[59]  J. Hoppe On M-Algebras, the Quantisation of Nambu-Mechanics, and Volume Preserving Diffeomorphisms , 1996, hep-th/9602020.

[60]  J. A. Azcárraga,et al.  New generalized Poisson structures , 1996, q-alg/9601007.

[61]  Kaplan,et al.  Zero modes for the D=11 membrane and five-brane. , 1995, Physical review. D, Particles and fields.

[62]  P. Guha,et al.  On decomposability of Nambu-Poisson tensor. , 1996 .

[63]  P. Hanlon,et al.  On lie k-algebras , 1995 .

[64]  C. Callan,et al.  Worldbrane actions for string solitons , 1991 .

[65]  H. Nicolai,et al.  On the quantum mechanics of supermembranes , 1988 .

[66]  J. Stasheff,et al.  The Lie algebra structure of tangent cohomology and deformation theory , 1985 .

[67]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.